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ABSTRACT 

 

In a world of rapidly changing environmental conditions, species must effectively respond to 

their changing habitat or risk extinction. The goal of my dissertation is to elucidate the origins 

and mechanisms underlying the recent successful population expansion of the invasive coral 

Oculina patagonica in the Mediterranean Sea. To do this, I have utilized nuclear markers and 

next-generation sequencing data for the coral host and its algal symbiont as well as 

environmental data. 

 

Although only recently first described from the waters of the Mediterranean, genetic, historical 

demographic, and fossil evidence suggests that O. patagonica has not been anthropogenically 

introduced from the western North Atlantic. Instead, my results support the hypothesis that 

Oculina spp. has had a long history in the eastern Atlantic but remained undetected until it 

recently began expanding in the Mediterranean to invasive numbers, likely in response to 

environmental changes. Next, I found that the symbiotic algal communities harbored by Oculina 

corals vary geographically, and that this variation does not match the geographical variation of 

the host’s genetics. Instead, sea surface temperature is better correlated to symbiotic community, 

particularly in the Mediterranean, which may reflect acclimatization to local thermal conditions. 

Finally, in a closer inspection of a rapid poleward range expansion of O. patagonica along the 

Spanish Mediterranean coast, I found increased genetic diversity and adaptation to temperature 

that may have promoted its success. 

 

Together, my dissertation chapters shed light on the mechanisms that have allowed a coral to be 

successful despite stressful and changing environmental conditions. Unlike many previous 

studies aimed at assessing the adaptive capabilities and long-term success of tropical corals, my 

dissertation focusses on the success and adaptive potential of an understudied temperate coral. 

The findings presented here support the knowledge that O. patagonica is able to successfully 

respond to changing environmental conditions in its native range via both symbiont switching 

and host adaptation. 
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CHAPTER 1. 

INTRODUCTION 
 
Ecosystems both marine and terrestrial are changing rapidly, largely at the hands of humans 
(Vitousek 1994). In fact, no marine ecosystem has been unaffected by human influences 
(Halpern et al. 2008). Human disturbances and alterations, such as pollution, habitat 
fragmentation, coastal habitat modifications, overharvesting, species introductions, and climate 
change, threaten countless species. The loss of biodiversity over the last few centuries has been 
exceptionally rapid, indicating a mass human-induced extinction (Ceballos et al. 2015). 
Understanding the response of species to changing ecosystems, including acclimation or 
adaptation to local environmental conditions, and the particular environmental factors that drive 
their responses is necessary to inform and implement effective conservation plans. 
 
Although they occupy <0.1% of the world’s ocean, coral reefs are home to approximately 25% 
of marine species (Spalding et al. 2001). They provide invaluable ecosystem (Mumby et al. 
2008) and economic goods and services (Hoegh-Guldberg & Bruno 2010). Unfortunately, corals, 
the animals responsible for building and maintaining reef ecosystems, are currently declining 
worldwide as a result of stresses, including increasing sea temperatures, disease, nutrient 
pollution, and other anthropogenic disturbances (Aronson et al. 2003; Hoegh-Guldberg et al. 
2007; Hughes & Connell 1999; Hughes et al. 2003; Pandolfi et al. 2003). Understanding how 
corals respond and adapt to environmental changes and stresses is crucial to predicting their 
long-term success. 
 
Although corals occurring outside the tropics do not typically form large reefs like tropical 
corals, we can learn a great deal from studying them because unlike most tropical corals many of 
these corals are not endangered, but are instead thriving and even invading new habitats (Fenner 
& Banks 2004; Hoeksema & Vicente 2014; Salomidi et al. 2013; Serrano et al. 2013). Therefore, 
understanding the mechanisms that allow these corals to be successful can potentially be applied 
to corals at risk. 
 
1.1 CORAL HOLOBIONT 

 
Corals constitute a collection of many organisms. The coral animal, its endosymbiotic algae (the 
zooxanthellae), and its resident microbes compose the coral holobiont (Bourne et al. 2009; 
Rosenberg et al. 2007)(Figure 1.1). 
 
Photosynthetic zooxanthellae of the genus Symbiodinium provide nutritional resources for the 
coral host (Falkowski et al. 1984). A disruption of the relationship between the coral and its 
zooxanthellae, known as bleaching, can lead to a nutritionally depleted coral with impaired 
reproductivity and increased susceptibility to disease (Glynn & De Weerdt 1991; Harvell et al. 
2002; Szmant & Gassman 1990). Because zooxanthellae are partially responsible for corals’ 
pigmentation, bleaching causes corals to appear pale or white (Figure 1.2). If bleaching is severe 
or sustained, it can result in coral death. 
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Figure 1.1. Coral holobiont associates: the coral host, photosynthetic algae (zooxanthellae), and 
the microbial communities including bacteria, archaea, and viruses. 
 
In addition to symbiotic algae, all three coral layers (the surface mucus layer, the coral tissue, 
and the calcium carbonate skeleton) host large and diverse microbial communities, which 
include bacteria, archaea, and viruses (Rohwer et al. 2010). The benefits, if any, that these 
microbes confer on the coral host are unknown, although several hypotheses have been 
proposed. These include preempting available niches within the coral (thus preventing 
pathogenic microbes from colonizing), producing antibiotics (Chen et al. 2012; Kelman 2004; 
Nissimov et al. 2009; Shnit-Orland et al. 2012), and providing resistance to thermal stress 
(Gilbert et al. 2012). Furthermore, microbial community shifts have been associated with stress, 
further implicating their role in coral health (Lee et al. 2015; Vega Thurber et al. 2009). It is the 
combination of coral host and its symbionts that is or is not well suited to a particular habitat 
(Bordenstein & Theis 2015; Parkinson & Baums 2014). To fully comprehend the potential of 
corals to adapt to a changing world, then, it is necessary to understand its symbiotic associations 
in addition to the coral host itself. 
 

 
Figure 1.2. A partially bleached colony of Oculina patagonica from Portman, Spain. Adapted 
from Rodolfo-Metalpa et al. (2014), and reproduced with permission from the authors and 
publisher (Appendix D). 
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1.2 OCULINA AS A STUDY SYSTEM 

 

Over one-third of reef-building coral species face elevated extinction risks (Carpenter et al. 
2008). Not surprising, most studies have focused on the major tropical reef-building coral 
species experiencing the worst declines and evaluating how these species are responding to 
stressors. However, this limits our full understanding of how corals might be responding to 
anthropogenic change. Understanding the mechanisms that have enabled successful temperate 
coral species to thrive and even invade new habitats can provide further insight into predicting a 
coral’s adaptive potential and long-term success, and thus serve as a proxy for evaluating other 
corals that are at risk. 
 

Oculina spp. are scleractinian (hard) corals. Their sexes are separate and they broadcast-spawn, 
meaning individuals release their gametes into the water column where fertilization takes place 
(Brooke & Young 2005; Brooke & Young 2003; Fine et al. 2001). As such, they acquire their 
zooxanthellae from the environment after fertilization (i.e., horizontally). They are facultative 
zooxanthellate corals and can persist in a healthy azooxanthellate state, giving an opportunity to 
examine this understudied facultative relationship. 
 
Oculina corals occur in the western North Atlantic as well as across the Mediterranean Sea, often 
inhabiting disturbed habitats, including sites exposed to pollution (Fine et al. 2001). While the 
genus was originally described from the southeastern coast of North America (Miller & Hay 
1996), an additional species, O. patagonica, is thought to have recently invaded Mediterranean 
waters (Fine et al. 2001; Zibrowius 1974). Like other species within Oculina, O. patagonica has 
proven exceptionally hardy, showing comparable reproductive potential between contaminated 
and uncontained localities (Armoza-Zvuloni et al. 2012) and an ability to recover from exposure 
to acidic conditions (Fine & Tchernov 2007; Movilla et al. 2012) as well as from bleaching (Fine 

et al. 2001; Rodolfo-Metalpa et al. 2006; Shenkar et al. 2006). 
 
O. patagonica was first reported in the Mediterranean in 1966 in the harbor of Savona (Gulf of 
Genoa), Italy (Zibrowius 1974)(Figures 1.3 and 1.4). In 1973, it was found in the harbor of 
Alicante, Spain (Zibrowius & Ramos 1983) about 1,000 km away. Today, this coral is well 
established along the Mediterranean coast of Spain (Izquierdo et al. 2007; Serrano et al. 2013; 
Terrón-Sigler et al. 2015). Colonies near Marseille, France, were experimentally transplanted 
from Italian and Spanish sites in the early 1970’s (Fine et al. 2001; Zibrowius 1974). Records 
from the eastern Mediterranean are more recent: Egypt (1981), Lebanon (1992), Israel (1993), 
Turkey (2005), Greece (ca. 2006) (Bitar & Zibrowius 1997; Çinar et al. 2006; Fine & Loya 
1995; Salomidi et al. 2006)(Figure 1.4). O. patagonica has also been reported from Algeria 
(2005, 2007) and Tunisia (2006, 2008) (Sartoretto et al. 2008). O. patagonica, originally 
presumed to have a South American origin based on fossils (Zibrowius 1974), was thought to 
have been accidentally introduced into the Mediterranean coast of Spain via shipping. Such 
human-facilitated trans-Atlantic crossings have been reported for many other marine organisms 
including fish (Langeneck et al. 2012; Orsi Relini 2002) and corals (Hoeksema et al. 2011). 
From Spain, reports of O. patagonica spread east to Italy, south to Egypt, and eventually 
northward to Israel and Lebanon (Bitar & Zibrowius 1997; Fine et al. 2001; Salomidi et al. 2006; 
Sartoretto et al. 2008; Zibrowius 1974; Zibrowius & Ramos 1983). A 19-year observational 
study of O. patagonica determined that this coral has quickly spread northward across the 
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Catalonian coast (Serrano et al. 2013). The authors attribute the expansion to increased space 
availability provided by artificial habitats, higher sea temperatures, and biological features of the 
coral itself, including high growth rates, early reproduction, and high stress tolerance. Salomidi 
et al. (2013) found that this coral was significantly more abundant in the Aegean Sea on artificial 
substrates than on natural ones. As such, they proposed that human-mediated coastal habitat 
modification has facilitated the establishment and spread of this species in this region since its 
first reported sighting in 2005 (Salomidi et al. 2013).  
 

 
Figure 1.3. Site of the first reported Oculina patagonica colony in the Mediterranean in the Gulf 
of Genoa, Italy. The site was well-described by Zibrowius (1974). (Photo credit: Brian Leydet, 
Jr.) 
 
While populations of O. patagonica share common seasonal reproductive timing across the 
Mediterranean (Fine et al. 2001), they otherwise vary. Western populations have experienced 
recent recruitment and little or no recent bleaching (Fine et al. 2001; Rubio-Portillo et al. 2014; 
Sartoretto et al. 2008). In contrast, eastern populations in the Levant (Lebanon and Israel) face 
annual bleaching and low recruitment (Fine & Loya 1995; Fine et al. 2001). This geographic 
variation may be attributed to regional differences in water temperature. During the hottest 
month (August), sea surface temperatures in the Mediterranean range from 20-30˚C, with the 
warmest temperatures along the coasts of Tunisia and the Middle East. During the coldest month 
of February, sea surface temperatures range from 10-18˚C, with the coldest temperatures 
generally in the northern most part of the Adriatic Sea and the southern coast of France. 
 

 
Figure 1.4. Pictures of Oculina patagonica colonies from across the Mediterranean: A) Savona 
Harbor, Italy; B) Athens, Greece; C & D) Tyre, Lebanon. (Photo A credit: Brian Leydet, Jr.) 
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1.3 DISSERTATION 

 

My dissertation employs molecular techniques to investigate the symbiotic and genetic 
underpinnings allowing a species to successfully cope with and even thrive in an ever-changing 
world, as well as the environmental factors that drive adaptation or acclimatization. Specifically, 
its aim is to understand the origins and mechanisms underlying the rapid and recent population 
expansion of the invasive coral Oculina patagonica in the Mediterranean Sea. It addresses the 
following questions: 1) Has O. patagonica been anthropogenically introduced to the 
Mediterranean from the New World or has it recently expanded from native populations?, 2) Do 
Oculina spp. harbor different symbiotic algal communities across their geographic range and, if 
so, does the geographical variation suggest acclimation to local thermal regimes or simply 
coassociation with similarly geographically differentiated hosts? and 3) What mechanisms have 
facilitated O. patagonica’s recent range expansion along the Mediterranean coast of Spain? 
 

1.3.1. Overview of Chapters 

 
My first research chapter (Chapter 2) evaluates the species status of O. patagonica by genetically 
comparing populations from the Mediterranean to populations of other Oculina spp. from the 
western North Atlantic. Using five nuclear genetic markers, I found no genetic or historical 
demographic evidence to support a recent human-mediated introduction of O. patagonica from 
the western North Atlantic or an expansion across the Mediterranean. Instead, Mediterranean and 
western Atlantic populations are genetically distinct and appear to have begun diverging about 5 
million years ago. I also found evidence of a fossil record of Oculina spp. from the eastern North 
Atlantic millions of years before the present. My results suggest that Mediterranean populations 
of O. patagonica have long been isolated from those in North America and have not been 
recently introduced from there. Instead, it is more likely that O. patagonica has always existed 
somewhere in the eastern Atlantic, either in undetectable numbers or overlooked and 
undersampled sites and habitats, and has recently become invasive in the Mediterranean, perhaps 
in response to human-caused environmental changes. 
 
In my second research chapter (Chapter 3), I examined the role of the algal symbiont 
Symbiodinium in explaining the local success of Oculina across the western Atlantic and 
Mediterranean Sea. Using genetic and environmental data, I found that Oculina corals harbor 
different Symbiodinium communities across their western Atlantic and Mediterranean range and 
that habitat differences in sea surface temperature are better correlated with this geographical 
variation than the host’s genetics, depth, or chlorophyll a concentration, particularly in the 
Mediterranean. These results suggest that although facultative zooxanthellate corals like Oculina 
may be less dependent on their algal partners than obligate zooxanthellate corals, the 
Symbiodinium communities that they harbor may nevertheless reflect acclimatization to 
environmental variation among habitats. Ultimately, this variation in Oculina spp.’s algal 
symbionts may have allowed these corals to persist over such a wide and environmentally 
variable habitat range and to endure localized thermal stresses. 
 
My final research chapter explores and identifies mechanisms that have facilitated the range 
expansion of O. patagonica range along the Mediterranean coast of Spain (Chapter 4). Using a 
modified restriction-site associated DNA sequencing (RAD-Seq) protocol to target coral host 
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DNA, I collected 595 single nucleotide polymorphisms (SNPs) from 189 individual corals from 
both long-established core populations and two expansion fronts with different levels of success 
(less successful to the west, more successful to the north). Although more recent, the northern 
expansion populations are genetically distinct from the westward expansion and core populations 
and harbor greater genetic diversity as well. Temperature appears to have driven adaptation 
along the northern expansion, but not along the westward expansion. One locus (a V-type proton 
ATPase subunit) under selection associated with temperature along the northern expansion. 
Finally, I found no evidence of local adaptation to artificial substrate, suggesting that this coral is 
simply an opportunistic colonizer of free space made available by increasing coastal habitat 
modifications along the coast of Spain. Together, these results suggest that unique genetic 
variation and thermal adaptation along the northern expansion front (but not the westward 
expansion) have facilitated the poleward range expansion of O. patagonica in the western 
Mediterranean. 
 
Finally, in Chapter 5, I synthesize the results from all my research chapters, discuss the 
implications of my findings for understanding the factors and mechanisms that have allowed a 
coral genus to be so successful in a stressful and changing environment, and conclude with future 
directions. 
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CHAPTER 2. 

THE INVASIVE CORAL OCULINA PATAGONICA HAS NOT BEEN 

RECENTLY INTRODUCED TO THE MEDITERRANEAN FROM THE 

WESTERN ATLANTIC
1
 

 
2.1. ABSTRACT 

 

2.1.1. Background 

 

Effective policies, management, and scientific research programs depend on the correct 
identification of invasive species as being either native or introduced. However, many species 
continue to be misidentified. Oculina patagonica, first recorded in the Mediterranean Sea in 
1966, is believed to have been introduced in anthropogenic times and expanding in a west to east 
direction. However, its present identification and status as a recently introduced species remain 
to be explored. In this study, we used multi-locus genetic data to test whether O. patagonica in 
the Mediterranean has been recently introduced from the western North Atlantic. 
 

2.1.2. Results 

 

We found no genetic or historical demographic evidence to support a recent introduction of O. 

patagonica from the western North Atlantic or an expansion across the Mediterranean.  Instead, 
Mediterranean and Atlantic populations are genetically distinct and appear to have begun 
diverging about 5 Mya. We also found evidence of a fossil record of Oculina spp. existing in the 
eastern North Atlantic millions of years before the present. 
 

2.1.3. Conclusions 

 

Our results suggest that Mediterranean populations of O. patagonica have long been isolated 
from the western Atlantic, either in undetectable numbers or overlooked and undersampled sites 
and habitats, and have only recently been expanding to invasive levels as a result of 
environmental changes. Accurate identification of species’ invasive statuses will enable more 
effective research programs aimed at better understanding the mechanisms promoting the 
invasive nature of species, which can then lead to the implementation of efficient management 
plans. 
 

2.2. INTRODUCTION 

 

The number of introduced and invasive species is rising (Baskin 2002), rapidly altering 
ecosystems around the world, often by out-competing and displacing native species (Morales et 

                                                 
1 This chapter previously appeared as Leydet, K. P., and M. E. Hellberg (2015) The invasive 
coral Oculina patagonica has not been recently introduced to the Mediterranean from the 
western Atlantic. BMC Evolutionary Biology 15:79. Copyright rests with the authors. Permission 
from publisher to reproduce is not required (Appendix E). 
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al. 2013; Ricciardi et al. 1998). Beyond their direct impacts on native species, these invasive 
species can indirectly lead to cascading effects within a community (Kenis et al. 2009), thereby 
threatening ecosystem functions. Studies concerning successful introduced and invasive species 
are key to exploring the mechanisms by which these species adapt to and alter their new 
environment. However, determining whether a species is native or introduced is first necessary, 
and this is not always an easy task. 
 
Introduced species can be mislabeled as native due to taxonomic misidentification (Genner et al. 
2004; Turon et al. 2003). Native species can also be misidentified as introduced. Zenetos et al. 
(2005) reports that 23% of the 963 reportedly introduced species in the Mediterranean have been 
misidentified and therefore misclassified. Of the remaining 745 species, 13% remain 
questionable due to insufficient information and unresolved taxonomic status and many others 
maintain a “cryptogenic” status, as they cannot be reliably assigned to either “native” or 
“introduced” (Carlton 1996). In other cases, species are mislabeled as introductions due to a lack 
of historical records of an obvious presence (Concepcion et al. 2010; Hawryshyn et al. 2012; 
Taylor & Bothwell 2014; Zenetos et al. 2005). These misidentifications can have profound 
effects on the assessment of species status (Geller 1999). 
 
Invasive species are often assumed to have been introduced (Concepcion et al. 2010; Hawryshyn 

et al. 2012), however species can become invasive within their native range, usually due to 
human-mediated disturbances (Carey et al. 2012; Hierro et al. 2006; Simberloff 2011). Effective 
policies, management, and scientific research programs depend on the correct identification of 
invasive species as being either native or introduced. Whereas the management of introduced 
invasives is more concerned with the introduction scenario and conditions enabling subsequent 
expansion, management of native invasives should ideally be more focused on the changes in 
environmental conditions that facilitate their invasive characteristics in their native habitat 
(Simberloff et al. 2012; Taylor & Bothwell 2014). Therefore, to implement more effective 
research and management programs for invasive species, an invasive species must first be 
identified as either introduced or native. 
 
An introduced invasive population can be distinguished from native invasive populations in 
several ways. An expanding introduced population is expected to be genetically similar to an 
external source population where it originated (Perdereau et al. 2013). In contrast, a native 
invasive population will often be genetically distinct from populations outside its range 
(Concepcion et al. 2010; Kim et al. 2006). Inferring the divergence time between populations 
from different ranges can also establish whether or not an invasive population coincides with a 
recent introduction (estimated divergence time will overlap with the present day), or whether it 
predates anthropological times (older divergence time) (Brouat et al. 2014; Mun et al. 2003; 
Wares et al. 2002). Finally, the presence of a fossil record for an invasive species or its 
progenitors can indicate that the species has a long presence in a particular region (Hawryshyn et 

al. 2012; Taylor & Bothwell 2014).  
 
Corals of the genus Oculina were originally described from the southeastern coast of North 
America (Miller & Hay 1996). Although several nominal species exist in this region, Eytan et al. 
(2009) found no genetic differences among shallow water populations of four named taxa (O. 

arbuscula, O. diffusa, O. varicosa, and, O. robusta), suggesting that these designations do not 
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represent genetically distinct species. We will refer to these taxa collectively as “western Atlantic 
(WA) Oculina spp.” 
 
An additional extant species, Oculina patagonica, occurs in the waters of the Mediterranean Sea 
(Fine et al. 2001; Zibrowius 1974). O. patagonica was originally described from fossils from the 
southeastern coast of South America (Zibrowius 1974) (Appendix A, Figure 2.S1), however 
reports of live specimens from South America are lacking and a recent survey of fouling 
communities in Argentinian ports failed to find any evidence of this species (Schwindt et al. 
2014). O. patagonica has been thought to have been introduced in anthropogenic times from the 
western south Atlantic to the western Mediterranean via shipping. O. patagonica was first 
reported from the harbor of Savona (Gulf of Genoa), Italy in 1966 (Zibrowius 1974) and soon 
after from the harbor of Alicante, Spain (Zibrowius & Ramos 1983), 1000 km away. From the 
western Mediterranean, it is thought to have spread easterly, and while today reports of this coral 
in many locations reflect populations limited in number and range, populations in Spain, Greece, 
and Israel are well-established and expanding (Ballesteros 1998; Bitar & Zibrowius 1997; Çinar 
et al. 2006; Cvitković et al. 2013; Fine & Loya 1995; Fine et al. 2001; Izquierdo et al. 2007; 
Rubio-Portillo et al. 2014; Salomidi et al. 2006; Salomidi et al. 2013; Sartoretto et al. 2008; 
Serrano et al. 2013; Zibrowius 1974; Zibrowius & Ramos 1983). 
 
Alternatively to being recently introduced, O. patagonica may be a native species that has only 
recently been detected due to a recent expansion. The original description and identification of 
O. patagonica is based on fossil remains, not living counterparts (Zibrowius 1974). This is 
problematic, as morphology is a poor delineation of coral species in general (Fukami et al. 2004; 
Pinzon & LaJeunesse 2011) and Oculina species in particular (Eytan et al. 2009) (Appendix A, 
Figure 2.S1). Given that no known populations of O. patagonica presently exist outside the 
Mediterranean, populations of WA Oculina spp. are currently the most likely source for a recent 
introduction. 
 
Here, we ask whether O. patagonica has been recently introduced into the Mediterranean from 
the western North Atlantic, or whether it is an eastern Atlantic native only newly become 
invasive. First, we use multilocus genetic data to determine whether O. patagonica is genetically 
similar to or distinct from WA Oculina spp. If O. patagonica has been recently introduced from 
the western North Atlantic, we expect these populations to be genetically similar. Second, we 
estimate divergence time between O. patagonica populations and WA Oculina sp. populations 
and evaluate whether the estimate is consistent with an anthropogenic introduction. We also 
search museum collections for evidence of a fossil record of Oculina spp. in the eastern Atlantic, 
which would suggest that Oculina has a long history in this region. Finally, we explore whether 
patterns of genetic diversity in O. patagonica are consistent with a west to east expansion across 
the Mediterranean from a single point of introduction. 
 
2.3. METHODS 

 

2.3.1. Sampling and Genotyping 

 
Mediterranean samples (n=66) of Oculina patagonica were collected from Spain, Italy, Greece, 
Lebanon, and Israel during the summers of 2011–13 (Figure 2.1, Appendix A, Table 2.S1). 
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Individual colonies were sampled by chipping off a small piece of skeleton containing coral 
tissue and preserving it in 95% ethanol. Samples were generally 10 m from conspecifics and not 
physically connected to them to avoid collecting clonemates. 
 

 
Figure 2.1. Map of collections sites of Oculina spp. populations used in this study. Populations 
along the western North Atlantic included North Carolina, three locations in Florida (Daytona 
Beach, Cape Florida, and Panama City), and Bermuda. Mediterranean populations included 
Spain, Italy, Greece, Lebanon, and Israel. This figure was created using maps freely available for 
use from ESRI. 
 
Western North Atlantic Oculina spp. samples (n=56) consisted of a subset of populations along 
the coast of the eastern United States from Eytan et al. (2009). The four populations (North 
Carolina, Daytona Beach, Cape Florida, Panama City) were chosen to represent the two 
geographic genetic clusters (North Carolina and Daytona Beach= northern cluster; Cape Florida 
and Panama City= southern cluster) and include three nominal species: O. arbuscula, O. 

varicosa, and O. diffusa, although Eytan et al. (2009) found no genetic differences among these 
named taxa. We also obtained 13 new samples of nominal species O. diffusa and O. varicosa 
from Bermuda. We will refer to these samples collectively as “Western Atlantic (WA) Oculina 
spp.” All sampling was conducted by or with local collaborators in accordance with local and 
CITES regulations. 
 
We extracted genomic DNA using QIAGEN DNeasy Kit following the manufacturer's protocols 
with the following modifications. We lysed tissues at 56˚C overnight. We added 200 μl elution 
buffer and incubated at room temperature for an hour prior to the final centrifuge step. All 
individuals were genotyped, either previously or in this study, for the mitochondrial cytochrome 
oxidase I (COI) gene and the coding region of five nuclear genes (Appendix A, Table 2.S2). COI 
was genotyped using previously deigned primers (Folmer et al. 1994). Three of the nuclear genes 
(putatively: fatty acid elongase, elongation factor 1α, and tachylectin-2 motif) were previously 
developed to assess subdivision in WA Oculina spp. populations (Eytan et al. 2009), so only the 
13 Bermuda and 66 Mediterranean samples were genotyped for these markers here. Two new 
nuclear markers (putatively: crystalline and S-adenosylmethionine synthetase) were developed 
using an expressed sequence tag (EST) library (Eytan et al. 2009); all samples were genotyped 
for these. 
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Polymerase chain reaction (PCR) amplifications were conducted in 25 μl reactions consisting of 
2.5 μl of 10x buffer, 10 μM of dNTPs and each primer, and 0.2 μl of One TaqTM DNA 
polymerase (New England Biolabs Inc.). Amplifications were performed in a Bio-Rad T100 
thermocyler under the conditions outlined by Eytan et al. (2009). Samples were sequenced in 
both directions using BigDye v3.1 on an ABI 3130XL at the Louisiana State University 
Genomics Facility. Sequences were aligned and edited using Geneious 4.5.5 (Drummond et al. 
2010). Sequences obtained from Eytan et al. (2009) were trimmed to align to sequences 
generated in this study. To resolve alleles in heterozygous individuals, we employed a Bayesian 
statistical method implemented in PHASE 2.1 (Stephens & Donnelly 2003; Stephens & Scheet 
2005; Stephens et al. 2001). Individuals with alleles that could not be phased to a probability 
>90% were cloned using the Invitrogen TOPO TA kit following the manufacture's protocols. At 
least eight clones per reaction were sequenced to identify the two alleles present in a sample. The 
phased individuals derived from the cloning reactions were then added to the ‘known’ PHASE 
file and the data sets were re-analyzed. This process was repeated until the phase of all individual 
genotypes was recovered with >90% probability. Individuals heterozygous for an 
insertion/deletion were resolved using CHAMPURU 1.0 (Flot 2007). In the end, we were able to 
successfully resolve all 122 individuals’ multilocus genotypes. 
 
To prevent clonal reproduction from skewing subdivision and genetic diversity measures, we 
removed individuals that shared a multilocus genotype with another individual in the same 
population. The final nuclear data set contained 105 individuals (Appendix A, Table 2.S1). 
Measures of genetic diversity for each nuclear marker were calculated in DnaSP (Librado & 
Rozas 2009; Rozas & Rozas 1995) (Appendix A, Table 2.S2). We tested each gene region for 
intralocus recombination using GARD implemented in Hy-Phy (Delport et al. 2010; Pond et al. 
2005; Pond et al. 2006). 
 
2.3.2. Genetic Diversity and Population Subdivision 

 
To visualize the relationships among alleles, we constructed haplotype networks for each locus 
using statistical parsimony implemented in TCS 1.21 (Clement et al. 2000). These networks 
reveal how alleles for a particular gene are shared among individuals from different populations. 
We calculated allelic richness for all populations using FSTAT 2.9.3.2 (Goudet 1995) and 
calculated observed heterozygosity using GENODIVE (Meirmans & Van Tienderen 2004). To 
test whether Mediterranean populations harbor less genetic diversity than western Atlantic 
populations, we compared their average allelic richness and observed heterozygosities using two-
sample one-tailed t-tests in GraphPad Prism 5. We performed similar comparisons between 
western Mediterranean (Spain and Italy) and eastern Mediterranean (Greece, Lebanon, and 
Israel) populations using two-sample two-tailed t-tests. To test for hierarchical genetic 
subdivision, we performed Analyses of Molecular Variance (AMOVA) implemented in 
GENODIVE (Meirmans & Van Tienderen 2004) for all populations combined, and for only 
Mediterranean populations. 
 
The Bayesian clustering analysis implemented in STRUCTURE (Pritchard et al. 2000) has been 
used often to infer species introductions and identify potential source populations (Perdereau et 

al. 2013). Here, we used STRUCTURE 2.3.4 (Pritchard et al. 2000) to test whether O. 

patagonica populations in the Mediterranean are genetically similar to or distinct from WA 
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Oculina spp. populations. We first analyzed all populations together, and then analyzed the pool 
of Mediterranean populations separately. We ran the program for 1 million MCMC steps and 
discarded the first 100,000 steps as burn-in. We used the more conservative admixture model 
with uncorrelated allele frequencies. We performed 10 iterations for each inferred number of 
genetic clusters, k. We used the Evanno method (Evanno et al. 2005) implemented in 
STRUCTURE HARVESTER (Earl & vonHoldt 2012) to determine the most likely number of 
genetic clusters, k, in the data. We also used STRUCTURAMA 2.0 (Huelsenbeck & Andolfatto 
2007) to explicitly estimate k without a prior assignment of a range of k, as in STRUCTURE. 
Each trial was run for 20 million generations, sampling every 100, discarding the first million as 
burn-in. We ran four chains at a temperature of 0.2, and we employed a variety of model options. 
 
2.3.3. Divergence Time 

 
We estimated the time of divergence between the western North Atlantic and Mediterranean 
populations using a coalescent-based method implement in IMa (Hey & Nielsen 2007). IMa uses 
Markov Chain Monte Carlo (MCMC) simulations of gene genealogies to estimate the divergence 
time (t), genetic diversities (θ1, θ2, and ancestral θ) and migration rates (m1 and m2) for two 
populations. To convert divergence time (t), which is scaled by mutation in IMa, to years, we 
used the average nuclear substitution rate for Porites corals of 0.138% per Ma (Prada et al. 
2014), since a rate for Oculina corals is unavailable, which was converted to a rate per locus per 
year for each marker (Appendix A, Table 2.S2). Given that the sequence alignments showed 
sites with more than two variants and/or haplotype networks contained multiple reticulations, we 
used the finite-sites model for all genes. 
 
We first performed several IMa runs, subsequently adjusting the upper bounds on the parameter 
priors, to determine the most efficient search parameters. We then ran four runs that differed 
only in the starting seed for 3,000,000 total steps sampling every 100 steps for a total of 30,000 
saved genealogies following a burn-in of 500,000 steps. The runs yielded similar results. We 
therefore combined the runs and estimated all parameters  
and performed nested model testing on the total saved genealogies in IMa’s L mode (load trees). 
IMa analyses were conducted with high performance computational resources provided by 
Louisiana State University. 
 
We recorded the maximum-likelihood estimate from the posterior probability distribution for 
divergence time, adjusted with a two year generation time (Fine et al. 2001) and its credibility 
interval based on the shortest parameter interval containing 90% of the area under the posterior 
distribution curve. Because the upper end of the posterior probability distribution did not drop to 
zero (Figure 2.5), we used the lower bound on the distribution as the parameter value at which 
the probability dropped to zero at the upper bound (McGovern et al. 2010). To evaluate all 
possible scenarios of divergence, which differ in the number of unique divergence parameters 
and therefore divergence complexity, we used model-based inference and model-based selection 
to calculate evidence ratios and rank all possible models (Anderson 2008; Carstens et al. 2009). 
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2.3.4. Fossil Record Search 

 
We searched museum collections for evidence of a fossil record of Oculina spp. in the eastern 
Atlantic and/or the Mediterranean. First, we explored the Smithsonian National Museum of 
Natural History’s Department of Invertebrate Zoology records by performing a keyword search 
of Oculina on the IZ collections database website. We also explored the Muséum National 
d’Histoire Naturelle Paléontologie collections database by performing a general search for 
Oculina on the collections website. From both lists of matches, we searched for fossil specimens 
of Oculina spp. from eastern Atlantic and Mediterranean countries and recorded the catalog 
number, species name, location, and geologic age. Several of the specimens from the 
Smithsonian National Museum of Natural History were observed during a visit to the museum in 
January 2013. 
 
2.3.5. Population Expansion within the Mediterranean 

 
To test for expansion in the Mediterranean, we used LAMARC 2.0 (Kuhner 2006), which 
estimates parameters including population growth rate using coalescent theory and Metropolis 
Monte Carlo sampling technique. Three replicates were each run using a Bayesian search 
strategy and a single final chain. Following a burn-in of 500,000, 5 million trees were sampled 
every 100 step. Three simultaneous searches were performed at heating temperatures of 1, 1.2, 
and 1.3, and a swap interval of 10. Trial runs were first conducted and the output files examined 
in the program TRACER 1.5 (Rambaut & Drummond 2007) to adjust the parameter bounds and 
assess the run. A “good run” was one in which both the effective sample size (ESS) values were 
great than 200 and trace plots for each parameter were stationary. LAMARC calculates the 
overall growth rate across all genes and replicates. Positive values of growth rate indicate that the 
population has been growing, while negative values indicate that it has been shrinking. 
 

2.4. RESULTS 

 

2.4.1. Genetic Diversity and Population Subdivision 

 
We genotyped 122 samples of Oculina spp. from the western North Atlantic (n=56) and 
Mediterranean (n=66) for the mitochondrial COI gene and five nuclear genes. Western North 
Atlantic populations included North Carolina, Daytona Beach, FL, Cape Florida, FL, Panama 
City, FL, and Bermuda. Mediterranean populations of O. patagonica included Spain, Italy, 
Greece, Lebanon, and Israel (Figure 2.1). A total of 17 individuals from Spain, Greece, and 
Israel were removed from the dataset because they shared a multilocus genotype with another 
individual in the same population, so the final nuclear data set contained 105 individuals 
(Appendix A, Table 2.S1). All O. patagonica samples shared the same COI haplotype common 
to 98% of WA Oculina spp. (Appendix A, Figure 2.S2). Because COI was nearly invariant, as 
expected due to the conservation of anthozoan mitochondrial DNA (Hellberg 2006), we used 
only the five nuclear genes in all analyses. GARD did not detect recombination within any of 
these five gene regions. 
 
Haplotype networks revealed that, while populations in the western North Atlantic and the 
Mediterranean share many alleles at all five loci, all markers possess several private alleles 
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unique to just one region (Figure 2.2). Specifically, for three genes (p14, p62, and p302), over 
half of the total alleles for each of those genes are unique to the Atlantic. In contrast, the 
Mediterranean harbors fewer private alleles for all genes (Figure 2.2). T-tests revealed that allelic 
richness was greater in the western North Atlantic than in the Mediterranean (Figure 2.3a), 
although this difference is not large (western North Atlantic mean = 2.38±0.09; Mediterranean 
mean= 2.14±0.09), and therefore likely not biologically significant. Observed heterozygosity did 
not differ between the western Atlantic and Mediterranean (Figure 2.3a), nor did allelic richness 
or observed heterozygosity between western Mediterranean (Spain and Italy) and eastern 
Mediterranean (Greece, Lebanon, and Israel) populations (Figure 2.3b). 
 

 
Figure 2.2. Haplotype networks of the five nuclear genes used in this study. Each pie graph 
represents an allele and the shades represent the proportion of individuals from the different 
populations that share that particular allele. White represents western North Atlantic Oculina 
spp. populations. Black represents Mediterranean populations of Oculina patagonica. Line 
segments connecting alleles represent a single mutation step separating the alleles, and small 
black dots represent inferred alleles not present in our dataset. 
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Figure 2.3. Comparison of allelic richness and observed heterozygosity. Means of allelic richness 
and observed heterozygosity compared between western North Atlantic and Mediterranean 
populations of Oculina spp. (a), and between western Mediterranean (Spain and Italy) and 
eastern Mediterranean (Greece, Lebanon, and Israel) Oculina patagonica populations (b). Bars 
represent standard deviations. Asterisks represent significant differences as determined by t-tests. 
 
AMOVA revealed significant subdivision among all populations, as well as between western 
North Atlantic and Mediterranean populations (Table 2.1). However, AMOVA conducted on 
Mediterranean populations alone revealed no significant subdivision, either among populations 
or between the west and east (Table 2.2). Instead, variation within populations accounted for 
98% of observed variation. These findings suggest that while the western North Atlantic 
populations are genetically distinct from those in the Mediterranean, populations within the 
Mediterranean are genetically similar to each other. 
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Table 2.1. Analysis of molecular variance performed for all populations. Groups= western North 
Atlantic populations and Mediterranean populations. Significant P-values are in bold. 

Source of Variation %variation F-value P-value 

Within Populations 58.9% 0.411 NA 
Among Populations 8.4% 0.125 <<0.01 

Among Groups 3.3% 0.328 <<0.01 

 
Table 2.2. Analysis of molecular variance performed for Mediterranean populations only. 
Groups= West (Spain and Italy) and East (Greece, Lebanon, and Israel). 

Source of Variation %variation F-value P-value 

Within Populations 98.0% 0.02 NA 
Among Populations 1.4% 0.014 0.256 
Among Groups 0.6% 0.006 0.101 

 
To further test for more subtle genetic differentiation, we used STRUCTURE 2.3.4 (Pritchard et 

al. 2000) and the Evanno method (Evanno et al. 2005) implemented in STRUCTURE 
HARVESTER (Earl & vonHoldt 2012) to detect differentiated populations (k). When all 
populations were analyzed according to the Evanno method (Evanno et al. 2005), the most likely 
k was two. The visual representation of these two genetic clusters (Figure 2.4a) shows that the 
western North Atlantic, including Bermuda, and Mediterranean form distinct genetic clusters. At 
k =3, STRUCTURE recovered the two main genetic clusters previously found in the western 
North Atlantic (Eytan et al. 2009) in addition to the Mediterranean cluster (Figure 2.4b). When 
analyzing the Mediterranean populations alone, the Evanno method (Evanno et al. 2005) 
determined that the mostly likely k =4, although the Δk’s for the range of k tested were very low 
and similar, suggesting a lack of biologically meaningful clusters. Indeed, the visual 
representation fails to show any clear individual assignments and geographic association of these 
clusters, consistent with the Mediterranean populations being genetically similar across the 
region (Figure 2.4c). STRUCTURAMA runs corroborated these STRUCTURE results. 
 
2.4.2. Divergence Time 

 
We estimated the time of divergence between western North Atlantic and Mediterranean 
populations using IMa (Hey & Nielsen 2007). We found that the populations diverged 5.4 ± 2.0 
million years ago, long before recent times (Figure 2.5). The best supported IM model (Table 
2.3) had two parameters for population size and two for migration, suggesting that migration has 
played a role in the history of WA Oculina spp. populations and O. patagonica in the 
Mediterranean. Models of strict isolation were thousands of times less likely than the best model. 
Migration from the western North Atlantic to the Mediterranean was greater (0.00139 [90% 
highest posterior density interval= 0.0008– 0.0024]) than the reverse migration (0.000042 [0–
0.002]) (Figure 2.6). In fact, the next best model was one in which migration from the 
Mediterranean to the western North Atlantic was equal to 0. 
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Figure 2.4. STRUCTURE bar plots. Each bar represents an individual. Individuals are grouped 
by populations along the x-axis. Along the y-axis is the probability of assignment to a particular 
population represented by different shades. When analyzing all populations, the Evanno method 
(Evanno et al. 2005) determined that the mostly likely number of genetic clusters or populations 
(k) was 2 (a). The visual representation of these two populations (a) shows that individuals 
cluster geographically (western North Atlantic versus Mediterranean), and that the 
Mediterranean populations are genetically distinct from the western North Atlantic populations. 
At k =3 (b), the two main genetic clusters previously found in the western Atlantic (Eytan et al. 
2009) were recovered, while maintaining a genetically differentiated Mediterranean cluster. 
When analyzing the Mediterranean populations alone (c) there is no clear genetic structure 
across the Mediterranean, even though the Evanno method (Evanno et al. 2005) determined that 
the most likely number of populations (k) was 4. 
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Figure 2.5. Posterior probability distribution for divergence times between western North 
Atlantic and Mediterranean populations of Oculina spp. Divergence time= 5.4 ± 2.0 million 
years ago. 
 
 

 
Figure 2.6. Posterior probability distributions for migration between western North Atlantic and 
Mediterranean populations of Oculina spp. Posterior probability distribution for migration 
(average number of migrants per 1000 generations) scaled by neutral mutation rate between 
western North Atlantic and Mediterranean populations of Oculina spp. Migration from the 
western North Atlantic to the Mediterranean was 0.00139 (90% highest posterior density 
interval= 0.0008–0.0.0024). Migration from the Mediterranean to the western North Atlantic was 
0.000042 (0–0.002). 
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Table 2.3. Evidence ratios and ranks of all possible isolation with migration models. Evidence ratios and ranks calculated using 
model-based selection. For each model, the first three letters represent the three population parameters (θ1, θ2, and ancestral θ), and the 
last two letters represent the two migration parameters (m1 and m2), in that order. The best model is the first model listed (ABADE) 
followed by the next best models in descending order. 
 
Model 

 
k 

 
log(P) 

 
AIC 

 
Δi 

Model 
Likelihoods 

 
wi 

Evidence Ratio 
(best model) 

ABADE 4 -1.770 11.540 0.000 1.000 0.364  
ABC0D 4 -1.953 11.906 0.366 0.833 0.303 1.200 
FULL 5 -1.446 12.891 1.351 0.509 0.185 1.965 
ABBDE 4 -2.723 13.446 1.906 0.386 0.140 2.593 
ABADD 3 -7.920 21.840 10.300 0.006 0.002 172.431 
ABBDD 3 -8.351 22.702 11.163 0.004 0.001 265.416 
ABCDD 4 -7.358 22.715 11.175 0.004 0.001 267.094 
AAADE 3 -8.398 22.795 11.255 0.004 0.001 277.994 
AACDE 4 -7.866 23.731 12.192 0.002 <10-3 443.989 
AACDD 3 -10.835 27.671 16.131 <10-3 <10-3 3182.429 
AAADD 2 -12.542 29.084 17.545 <10-3 <10-3 6452.997 
ABCD0 4 -195.238 398.476 386.936 <10-50 <10-50 <1050 

ABC00 3 -228.380 462.760 451.220 <10-50 <10-50 <1050 
ABA00 2 -234.240 472.480 460.941 <10-100 <10-100 <10100 
ABB00 2 -249.428 502.855 491.315 <10-100 <10-100 <10100 
AAC00 2 -263.32 530.648 519.108 <10-100 <10-100 <10100 
AAA00 1 -272.668 547.337 535.797 <10-100 <10-100 <10100 
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2.4.3. The Fossil Record  

 
We explored online databases of museum collections for a fossil record of Oculina spp. in the 
eastern Atlantic and/or the Mediterranean. We found 16 fossil specimens of Oculina spp. in two 
independent museum collections: the Smithsonian National Museum of Natural History’s 
Department of Invertebrate Zoology (Appendix A, Figure 2.S1), and the Muséum National 
d’Histoire Naturelle Paléontologie. All specimens originated from north-northwestern France. 
The estimated ages of the specimens range broadly, with most from the Eocene (56–34 Ma) to 
the Miocene (23.03–5.332 Ma)(Table 2.4). 
 
2.4.4. Population Expansion within the Mediterranean 

 
To test for a past population expansion within the Mediterranean Sea, we used LAMARC 2.0 
(Kuhner 2006). The overall population growth rate across all genes and replicates was -65, 
indicating that the population has not been expanding. We treated the Mediterranean as a single 
population, since we did not detect significantly differentiated populations within the 
Mediterranean (Figure 2.4c). We also performed analyses on the three Mediterranean 
populations with the largest sampling sizes (Spain, Greece, and Israel) separately, and found 
similar results. 
 
2.5. DISCUSSION 

 

2.5.1. Oculina patagonica has not been Recently Introduced into the Mediterranean 

 
Our data show that Mediterranean populations of O. patagonica are genetically distinct from 
WA Oculina spp. populations (Figure 2.4a). While Oculina spp. populations from either side of 
the Atlantic share many alleles for all markers, there were notable private alleles for both regions 
(Figure 2.2). Contrary to expectations for a recently introduced and expanding species, 
Mediterranean O. patagonica harbors genetic diversity on par with long-established WA Oculina 
spp. populations (Figure 2.3a). Our IMa results reveal that O. patagonica and WA Oculina spp. 
populations diverged millions of years ago (Figure 2.5). Taken together, our results suggest that 
while O. patagonica populations from the Mediterranean are closely related to WA Oculina spp. 
populations, they are genetically differentiated from them and have not been introduced into the 
Mediterranean from the western North Atlantic in anthropogenic times. Although we did not 
include Oculina spp. samples from the Caribbean, Bermuda likely represents the Caribbean 
given that in other broadcast spawning corals little genetic variation has been found between the 
Caribbean and the western Atlantic (Goodbody‐Gringley et al. 2012). 
 
While there are many similar examples of misidentified native species (Concepcion et al. 2010; 
Taylor & Bothwell 2014; Wares et al. 2002), and see below, contrary to our findings for O. 

patagonica, many species have been introduced into the Mediterranean. A well-known example 
is the green alga, Caulerpa taxifolia (Meinesz & Boudouresque 1996). Using nuclear sequence 
data, Jousson et al. (1998) determined that this species was introduced into the Mediterranean 
from an aquarium in Monaco, which maintained an algal strain of unknown geographical origin 
cultivated in western European aquaria. Mitochondrial sequence data was used to determine that 
a Mediterranean clade of sea squirts, Clavelina lepadiformis, was recently introduced from 
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Table 2.4. Museum records of fossil specimens of Oculina spp. from the eastern Atlantic. 
Museum Record number Species Location Epoch or Age 
 
 
Smithsonian National 
Museum of Natural 
History 

USNM 64539 Oculina sp. Indre-et-Loire, France Eocene–Serravallian 
USNM I 80806 Oculina crassoramosa France Miocene 
USNM I 80807 Oculina crassoramosa France Miocene 
USNM I 80808 Oculina solanderi Oise, France Lutetian 
USNM I 80809 Oculina raristella France Eocene 
USNM I 80810 Oculina sp. Oise, France Lutetian 
USNM I 80811 Oculina sp. Seine-et-Oise, France Lower Lutetian 
USNM I 80812 Oculina sp. Eure, France Lutetian 

 
 
Muséum National 
d’Histoire Naturelle 

MNHN-F-M00169 Oculina gemmata Calvados, France Bathonian 
MNHN-F-M00170 Oculina neustriaca Calvados, France Bathonian 
MNHN-F-M00326 Oculina crassoramosa Indre-et-Loire, France Langhian 
MNHN-F-M00598 Oculina crassoramosa Indre-et-Loire, France Langhian 
MNHN-F-M00675 Oculina raristella Oise, France Lutetian 
MNHN-F-M00745 Oculina crassoramosa Indre-et-Loire, France Langhian 
MNHN-F-M00749 Oculina crassoramosa Indre-et-Loire, France Langhian 
MNHN-F-M01113 Oculina explanata Sarthe, France Cenomanian 
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eastern Atlantic populations (Turon et al. 2003). The Mediterranean Sea has experienced an 
influx of introduced species in recent decades (Galil 2009), which has been attributed to 
increased sea temperatures, along with coincident range expansions of introduced species and 
range shifts of native ones (Lejeusne et al. 2010).  
 
2.5.2. Where did O. patagonica Originate? 

 
The original hypothesis for the origin of Mediterranean O. patagonica suggested that, based on 
its identification, it must have been introduced from South America, where the only evidence 
(fossils) of this species existing outside the Mediterranean resides (Zibrowius 1974). However, 
reports of live specimens of O. patagonica in South America are lacking, and a recent survey of 
fouling communities in Argentinian ports failed to find any evidence of this species (Schwindt et 

al. 2014). If living O. patagonica are not present in the western South Atlantic, they could not 
have been recently introduced into the Mediterranean from this region. Although it is possible 
that O. patagonica still resides in the western South Atlantic in low undetected numbers or 
habitats, there are no grounds to suggest O. patagonica recently originated from South America 
until (if) those specimens are found. 
 
If O. patagonica has not recently travelled east across the Atlantic to the Mediterranean, then 
where did it originate? We found records for 16 fossil specimens of Oculina spp. from France 
(Table 2.4). Along with these multiple records from two museums, Oculina spp. fossils have also 
been reported from the Danish Basin during the Middle Danian (about 64 Mya) (Bernecker & 
Weidlich 2005) and south Aquitaine, France, during the Late Oligocene (about 25 Mya) 
(Cahuzac & Chaix 2009). Although all of these fossils originated from outside of the 
Mediterranean, they suggest that the genus Oculina has long been present in the eastern North 
Atlantic. 
 
A long presence in the eastern Atlantic is consistent with our genetic data, which suggest that the 
western North Atlantic and Mediterranean populations diverged 5.4 ± 2.0 million years ago 
(Figure 2.5). This coincides with the Late Miocene Messinian Salinity Crisis (5.33 Ma), when 
sea levels in the Mediterranean basin dropped, separating it from the Atlantic and killing off 
many marine species (Hsü et al. 1973; Krijgsman et al. 1999). The asymmetric migration in the 
history of Oculina spp. (Figure 2.6), with a greater inferred migration from the western North 
Atlantic to the Mediterranean, may reflect the repopulation of the Mediterranean with Atlantic 
aquatic fauna following the Messinian Salinity Crisis (Hsü et al. 1973; Krijgsman et al. 1999; 
Patarnello et al. 2007). However, an ancient introduction would likely leave behind a fossil 
record, and we found no Oculina spp. fossils from within the Mediterranean. This may be due to 
undiscovered or undocumented fossils, but could also indicate that O. patagonica was more 
recently introduced from elsewhere, likely the eastern North Atlantic (Wangensteen et al. 2012). 
Our finding of no genetic structure within the Mediterranean also suggests that it may not  
have an ancient presence there. Further survey efforts are needed to determine whether extant 
Oculina spp. populations exist in the eastern North Atlantic, and whether they are the source of 
O. patagonica.  
 
Another hypothesis for the origin of O. patagonica lies along the western coast of Africa. 
Schizoculina africana has both a fossil and living presence in Cape Verde (Boekschoten & Best 
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1988; Monteiro et al. 2008). Originally known as Oculina africana, this species was split to form 
a new genus (Schizoculina) due largely to a unique way in which polyps bud (Wells 1937; 
Zibrowius 1974). However, dual modes of budding have been reported within a single coral 
species (Kai & Sakai 2008) and may therefore not be a good diagnostic trait to differentiate 
species. Future genetic work is needed to investigate whether Schizoculina africana and Oculina 

patagonica are in fact conspecific, and whether O. patagonica originated from the northwestern 
coast of Africa. 
 
Oculinidae is a taxonomically confused family (Fukami et al. 2004; Kitahara et al. 2010) in need 
of a more in depth genetic study to better understand the relationships between and within the 
genera and species in this family. As indicated by mitochondrial and nuclear genes, Oculinidae is 
paraphyletic, and Oculina is more closely related to some members of different families 
(Faviidae, Caryophylliidae, and Rhizangiidae) than to some members of its own family. Thus, 
representatives from some extra-familial genera with which Oculina has sometimes been allied 
(Astrangia of the Rhizangiidae, Cladocora of the Caryophylliidae) (Zibrowius 1974) should also 
be included in future efforts to trace the origins and taxonomic classification of Oculina 

patagonica. 
 
2.5.3. The Geographical Expansion of O. patagonica in the Mediterranean 

 
Direct observations testify to O. patagonica’s increase in abundance at shallow depths at many 
localities in the Mediterranean over the past 20 years (Salomidi et al. 2013; Serrano et al. 2013). 
Along the Catalan coast, the species spread from just one location in 1992 to 43 by 2010, a rate 
of northward expansion of 22 km per year (Serrano et al. 2013). In 2005, a few colonies of O. 

patagonica were first reported from a single site in the Saronikos Gulf of the Aegean Sea 
(Salomidi et al. 2006). By 2009, O. patagonica could be found in 45 of 54 surveyed sites in this 
region (Salomidi et al. 2013). 
 
Fine et al. (2001) proposed that O. patagonica has been expanding west to east, just as first 
reports of its presence have. Our tests, however, did not detect a genetic signal of expansion 
across the Mediterranean. While this may result from low power, the proposed west to east 
spread is also opposite to most other range expansions in the Mediterranean, which have 
occurred in a north-westward direction in response to increasing sea temperature (Lejeusne et al. 
2010). Because in the Mediterranean temperature increases from east to northwest, and rising 
temperatures have been proposed to be promoting the range expansion of O. patagonica (Serrano 

et al. 2013), a west to east expansion would be contrary to expectation, unless it was introduced 
into the western Mediterranean Sea, which our tests failed to support. Furthermore, some recent 
first reports have come from the western Mediterranean (Sartoretto et al. 2008), and O. 

patagonica was first reported from the Levant prior to Greece (Bitar & Zibrowius 1997; Fine & 
Loya 1995; Salomidi et al. 2006). Finally, if O. patagonica was first established in the western 
Mediterranean and only more recently in the east, then the western populations would likely 
harbor more genetic diversity; however, we found similar levels of genetic diversity across the 
Mediterranean. Alternatively, O. patagonica could be moving into the Mediterranean from 
elsewhere in the eastern North Atlantic, but in sufficient numbers to not leave a genetic signature 
of expansion. 
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Despite lack of evidence for a demographic expansion from west to east, it appears that O. 

patagonica’s invasive behavior may have “expanded” west to east. Serrano et al. (2013) report 
an expansion along the Spanish coast from 1992-2010. Salomidi et al. (2013) reported a later 
spread along the coast of Greece from 2005-2009. While this eastward trend may owe to chance, 
it could also be due to human-mediated modifications of shallow coastal habitats occurring 
earlier in the west, or limiting conditions in the east (Fine et al. 2001) that populations have 
adapted or acclimated to overtime (Armoza-Zvuloni et al. 2011). 
 

2.5.4. O. patagonica is Native Species Recently Turned Invasive 

 
It seems most likely that O. patagonica has always existed somewhere in the eastern Atlantic and 
has recently become invasive in the Mediterranean, expanding in local regions in response to 
environmental change (Lejeusne et al. 2010), likely mediated by human-modifications of coastal 
habitats (Salomidi et al. 2013; Serrano et al. 2013). In a similar way, the snowflake octocoral, 
identified in Hawai'i as Carijoa riisei, was believed to have been recently introduced from its 
native range in the Caribbean. However, Concepcion et al. (2010) used mitochondrial and 
nuclear sequence data to compare the Hawaiian populations to worldwide populations of Carijoa 
and found that the Hawaiian populations were not genetically similar to the Caribbean and 
therefore did not originate from there. The originally misidentified native diatom Didymosphenia 

geminata remained undetected in its native range for decades before blooms were documented in 
the 1990s (Bothwell et al. 2014). Today, this native invasive alga is rapidly expanding locally in 
response to environmental changes (Bothwell et al. 2014; Taylor & Bothwell 2014). The 
gastropod, Littorina littorea, has long been thought to have been recently introduced to North 
American from Europe. However, both mitochondrial and nuclear sequence data indicated that 
the North American and European populations diverged thousands of years ago. This native 
gastropod is also believed to have begun expanding along the coast of New England as a result 
of environmental changes (Wares et al. 2002). 
 
Identifying additional mechanisms that facilitate invasiveness in O. patagonica will require work 
aimed at better identifying and characterizing the source populations and population dynamics of 
well documented locally expanding O. patagoncia populations within the Mediterranean, such as 
along the coasts of Spain (Serrano et al. 2013) and Greece (Salomidi et al. 2013). The conditions 
at these invasion localities can then be compared to conditions where O. patagonica exits but is 
not to date invasive to better understand the mechanisms driving its expansion. Such studies may 
also aid in assessing the future of the newly discovered coral species, Oulastrea crispate, in the 
Mediterranean as it too is expected to rapidly expand its range (Hoeksema & Vicente 2014). 
 
Additional studies are also needed to better understand the ecological consequences of the 
expansion of Oculina patagonica. While marine range shifts may occur at a slower rate than 
marine introductions, their potential effects on the community are likely to be just as significant 
(Sorte et al. 2010). O. patagonica has been shown to successfully compete with bryozoan 
Watersipora sp. (Fine & Loya 2003). Serrano et al. (2012) have reported a shift from macroalgal 
to O. patagonica dominance in the Mediterranean. Given that macroalgae are important primary 
producers, this shift may result in significant changes in ecosystem functioning.  
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Corals are currently facing worldwide declines as a result of stresses, including increasing sea 
temperatures, disease, and other anthropogenic disturbances (Aronson et al. 2003; Hoegh-
Guldberg et al. 2007; Pandolfi et al. 2003). Understanding the factors and characteristics that 
promote resilience in O. patagonica in the midst of environmental change may shed light into 
assessing and managing the long-term success of corals that are currently at risk. 
 
2.5.5. Conclusions 

 
Despite years of maintaining that Oculina patagonica is a recently introduced coral species in the 
Mediterranean, we found no genetic or historical demographic evidence to support that claim. 
Our results suggest that Mediterranean populations of O. patagonica have long been isolated 
from WA Oculina spp., and have only recently become invasive in the Mediterranean, most 
likely due to environmental changes. We advise against hastily identifying a previously unknown 
species as being introduced without detailed genetic analyses and comparisons to potential 
source populations. Accurate identification of species’ invasive statuses will enable more 
effective research programs aimed at better understanding the mechanisms promoting the 
invasive nature of species, which can then lead to the implementation of efficient management 
plans. 
 
2.6. AVAILABILITY OF DATA 

 
Haplotypes for COI, p14, p62, and p302 for western North Atlantic Oculina spp. populations 
obtained by Eytan et al. (2009) are available on GenBank [FJ966395–FJ966875]. Haplotypes 
generated here are available on The European Nucleotide Archive [LN613417–LN614380]. 
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CHAPTER 3. 

DISCORDANT CORAL–SYMBIONT STRUCTURING: FACTORS 

SHAPING GEOGRAPHICAL VARIATION OF SYMBIODINIUM 

COMMUNITIES IN A FACULTATIVE ZOOXANTHELLATE CORAL 

GENUS, OCULINA
1
  

 

3.1. ABSTRACT 

 

Understanding the factors that help shape the association between corals and their algal 

symbionts, zooxanthellae (Symbiodinium), is necessary to better understand the functional 

diversity and acclimatization potential of the coral host. However, most studies focus on tropical 

zooxanthellate corals and their obligate algal symbionts, thus limiting our full comprehension of 

coral-algal symbiont associations. Here, we examine algal associations in a facultative 

zooxanthellate coral. We survey the Symbiodinium communities associated with Oculina corals 

in the western North Atlantic and the Mediterranean using one clade-level marker (psbA coding 

region) and three fine-scale markers (cp23S–rDNA, b7sym15 flanking region, and b2sym17). We 

ask whether Oculina spp. harbor geographically different Symbiodinium communities across 

their geographic range and, if so, whether the host’s genetics or habitat differences are correlated 
with this geographical variation. We found that Oculina corals harbor different Symbiodinium 

communities across their geographical range. Of the habitat differences (including chlorophyll a 

concentration and depth), sea surface temperature is better correlated with this geographical 

variation than the host’s genetics, a pattern most evident in the Mediterranean. Our results 
suggest that although facultative zooxanthellate corals may be less dependent on their algal 

partners compared to obligate zooxanthellate corals, the Symbiodinium communities that they 

harbor may nevertheless reflect acclimatization to environmental variation among habitats. 

 

3.2. INTRODUCTION 

 

Coral colonies constitute a partnership between many species. The coral animal itself, its 

endosymbiotic algae, and its resident microbes compose the coral holobiont (Bourne et al. 2009; 

Rosenberg et al. 2007). Photosynthetic algae of the genus Symbiodinium contribute nutritionally 

to the coral (Falkowski et al. 1984; Muscatine & Porter 1977) and enhance calcification 

(Tambutté et al. 2011). Bleaching, a disruption of the relationship between the coral and its 

algae, is associated with a nutritionally depleted coral with impaired reproduction and increased 

susceptibility to disease and mortality (Glynn 1984; Harvell et al. 2002; Szmant & Gassman 

1990). Assessing intraspecific coral-algal pairings and the factors shaping this association is 

crucial to better understanding the functional diversity and adaptive potential of the holobiont 

(Parkinson & Baums 2014). 

 

The genus Symbiodinium is comprised of nine distinct phylogenetic clades (A–I), with numerous 

types or strains designated within each clade (Pochon & Gates 2010; Pochon et al. 2014). Some 

                                                 
1
 This chapter previously appeared as Leydet, K. P., and M. E. Hellberg (2016) Discordant coral-

symbiont structuring: factors shaping geographical variation of Symbiodinium communities in a 

facultative zooxanthellate coral genus, Oculina. Coral Reefs. It is reproduced with permission of 

the publisher (Appendix F). 
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subtypes, approximating species-level designations, have also been described (LaJeunesse et al. 

2012; Parkinson et al. 2015). Coral-Symbiodinium associations vary in their degree of 

specificity. At one extreme, the relationship between coral and algal symbionts may be highly 

specific and stable through space and time (Bongaerts et al. 2010; Pinzon & LaJeunesse 2011; 

Prada et al. 2014). Alternatively, the algal symbionts may vary geographically within species 

(Keshavmurthy et al. 2012; LaJeunesse et al. 2004), including by depth (Toller et al. 2001). 

Variation in the Symbiodinium communities found associated with different coral species may 

reflect differences in environmental conditions endured by the holobiont, including seasonal 

fluctuations in temperature (Chen et al. 2005; Thornhill et al. 2006b), recovery from bleaching 

events (Jones et al. 2008; Thornhill et al. 2006b), anthropogenic thermal stressors 

(Keshavmurthy et al. 2012), and irradiance variation (Finney et al. 2010; Toller et al. 2001). This 

is because Symbiodinium clades and even types vary in their thermal tolerance (McGinty et al. 

2012; Tchernov et al. 2004) and photophysiology (Iglesias-Prieto & Trench 1997; Reynolds et 

al. 2008). These functional differences can affect the holobiont. For example, corals harboring 

heat-tolerant Symbiodinium have a higher bleaching threshold temperature than do counterparts 

harboring less thermal-tolerant Symbiodinium (Berkelmans & Van Oppen 2006; Howells et al. 

2012). 

 

The particular host-symbiont pairings best suited to local conditions depend not only on the 

environmental tolerance of the Symbiodinium, but also on the life history characteristics of the 

coral. Brooding corals generally acquire their zooxanthellae from their parent (vertically), while 

broadcast spawning corals typically acquire their symbionts from the environment (horizontally) 

(Baird et al. 2009; Stat et al. 2006). However, the expectations of highly stable and specific 

associations in the former case and more dynamic associations in the latter (LaJeunesse et al. 

2004) are not always met (Pettay et al. 2011; Stat et al. 2009; Stat et al. 2013). 

 

Unlike obligate zooxanthellate corals, facultative zooxanthellate corals can persist in a healthy 

azooxanthellate state. To date, studies have largely focused on obligate tropical zooxanthellate 

corals and their algal symbionts. For facultative zooxanthellate corals, symbiont types may not 

be strongly associated with host genetics or environmental conditions because these corals likely 

do not strongly depend on locally adapted algal symbionts. On the other hand, this lack of 

dependence between facultative zooxanthellate corals and their symbionts may allow these 

corals and the symbionts the time and opportunity to be more selective in their associations. 

 

Corals of the genus Oculina provide an opportunity to test the determinants of algal associations 

in a facultative zooxanthellate coral. Oculina corals are gonochoristic broadcast spawners 

(Brooke & Young 2005; Brooke & Young 2003; Fine et al. 2001) that acquire their 

zooxanthellae horizontally. They occur in the western North Atlantic as well as across the 

Mediterranean Sea. Studies utilizing low-resolution markers and a limited number of populations 

revealed that Oculina corals in the western North Atlantic and the Mediterranean associate with 

Symbiodinium type B2 (LaJeunesse et al. 2012; Rodolfo‐Metalpa et al. 2014; Rubio-Portillo et 

al. 2014a; Thornhill et al. 2008), while type B1 has only been reported from a single Oculina sp. 

colony in the western North Atlantic (LaJeunesse 2001). Patterns of Symbiodinium communities 

across Oculina’s trans-Atlantic distribution remain to be explored. This is of particular interest 

given the wide and variable environmental conditions endured by these corals, including water 

temperatures varying from 13 to 30˚C across their geographic range, and even within a single 
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location (Armoza-Zvuloni et al. 2011; Fine et al. 2001; Rosenberg & Ben-Haim 2002; Rubio-

Portillo et al. 2014c). 

 

Here, we survey the Symbiodinium communities associated with Oculina corals in the western 

North Atlantic and the Mediterranean and investigate patterns of Symbiodinium intraspecific 

diversity harbored by these corals using one clade-level marker and three fine-scale markers. We 

ask whether Oculina spp. harbor geographically different Symbiodinium communities across 

their range and, if so, whether the host’s genetics or habitat differences in sea surface 
temperature, chlorophyll a concentration, or depth are correlated with this geographical 

variation. 

 

3.3. METHODS 

 

3.3.1. Sampling and Genotyping 

 

Previous work has shown that shallow (<30 m) temperate western North Atlantic Oculina spp. 

are genetically distinct from O. patagonica in the Mediterranean, despite sharing many alleles 

across five nuclear sequence markers totaling 1002 base pairs (bp) (Leydet & Hellberg 2015). 

Oculina spp. colonies were sampled from five localities in the western North Atlantic (Figure 

3.1; Appendix B, Table 3.S1) and include three nominal species (O. arbuscula, O. varicosa, and 

O. diffusa), although previous genetic work suggests that these morpho-species are not 

genetically distinct (Eytan et al. 2009). O. patagonica samples were collected from five localities 

spanning their Mediterranean distribution (Figure 3.1; Appendix B, Table 3.S1). Colonies were 

sampled by breaking off a 2-cm
2
 piece of live tissue and preserving it in 95% ethanol. 

 

We extracted genomic DNA from the samples using the QIAGEN DNeasy Kit following the 

manufacture's protocols with the following modifications. We allowed the tissues to lyse at 56˚C 
overnight, and we added 200 μl AE elution buffer and incubated at room temperature for an hour 
prior to the final centrifugation step. 

 

To identify the haploid Symbiodinium clade(s) present in our samples, we genotyped all 

individuals for the psbA minicircle coding region following previous protocols (Barbrook et al. 

2006). To investigate fine-scale Symbiodinium diversity, population subdivision, and symbiont 

associations, we genotyped all samples for one chloroplast marker (cp23S–rDNA) and two 

nuclear markers (microsatellite b7sym15 flanking region and microsatellite b2sym17) (Table 

3.1). All polymerase chain reaction (PCR) amplifications were conducted in 25μl reactions 
consisting of 2.5μl of 10× buffer (containing 15mM MgCl2), 2μl of dNTPs (2.5mM), 1μl of each 
primer (10μM), 0.2μl of One TaqTM DNA polymerase (New England Biolabs Inc.), and 1μl of 
template DNA. The PCR conditions for all primer pairs consisted of an initial denaturation at 

94°C for 3 min, an initial annealing for 2 min, and an initial elongation at 72°C for 2 min, 

followed by 35 cycles at 94°C for 35 sec, annealing for 1 min, and 72°C for 1 min 15 sec, and a 

final elongation at 72°C for 10 min. The annealing temperature for a and b regions of cp23S–
rDNA domain V (Santos et al. 2003) was 50˚C. For the few samples for which the above cp23S 

amplification failed, we used alternative primers (Santos et al. 2002); annealing temperature 55˚) 
that amplify a larger portion of the cp23S–rDNA domain V. Annealing temperature for the 

flanking region of the microsatellite marker b7sym15 (Pettay & Lajeunesse 2007) was 53˚C. For 
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the microsatellite marker b2sym17 (Grupstra et al. unpublished data), annealing temperatures 

were 55–59 ˚C. We designed a new forward primer (B2SYM17F2: 5ʹ 
GGCAACAATCATATTGACTAGGCC 3ʹ) to amplify b2sym17 for individuals that failed under 

the above conditions. 

 

Table 3.1. Markers used to genotype Symbiodinium associated with Oculina spp. in this study. 

Marker Primers Reference Size (bp)
 a
 

psbA coding region IA2F 

IA2R 

Barbrook et al. 2006 334 

cp23S-rDNA 

domain V (areas a and b) 

23SHYPERUP 

23SHYPERDNM13 

Santos et al. 2003 134–182 

cp23S-rDNA 

domain V 

23S1M13 

23S2M13 

Santos et al. 2002 134–182
b
 

b7sym15 flanking region B7SYM15F 

B7SYM15R 

Pettay & Lajeunesse 

2007 

126–145 

b2sym17 B2SYM17F, F2 

B2SYM17R 

Grupstra et al. 

unpublished 

27–41 

a
 final cropped alignment 

b
 cropped to length of cp23s-rDNA domain V (areas a and b) 

 

Sequencing was performed using BigDye chemistry v3.1 on an ABI 3130XL at the Louisiana 

State University Genomics Facility. Sequences were aligned and edited in GENEIOUS 4.5.5 

(Drummond et al. 2010). Samples were sequenced for psbA and cp23S in both directions. 

Preliminary sequencing revealed poor sequence reads through hypervariable repeat regions in 

b7sym15 (n=34) and b2sym17 (n=26), so most of these samples were sequenced in one direction 

only (forward for the former, and reverse for the latter). 

 

We cloned a subset of samples for cp23S (n=15), b7sym15 (n=18), and b2sym17 (n=16) using 

the Invitrogen TOPO TA kit. This allowed us to resolve haplotypes and validate the haplotype 

diversity scored from our sequencing efforts. Therefore, we chose a representative subset of 

samples for each marker that included samples that appeared to contain a mixture of haplotypes 

as well as some that only contained a single haplotype. We also chose samples that represented 

the haplotype diversity based on our sequencing efforts. At least six clones per reaction were 

sequenced in a single direction to identify the haplotypes present in a sample. Two putative 

haplotypes were scored as distinct if they represented at least 25% of the sequenced clones, 

because we were only interested in detecting the most common strain(s), not rare diversity. 

Because Symbiodinium are haploid, multiple haplotypes represent coexisting strains within an 

individual coral. Our cloning efforts corroborated our genotyping via unidirectional sequencing. 

Five samples (Daytona Beach=2; Panama City=2; and Israel=1) failed to amplify for at least one 

marker and were therefore not included in the final dataset of 117 individuals (Appendix B, 

Table 3.S1). 

 

The psbA minicircle coding region was nearly invariant among all samples (see below) and was 

therefore used solely for clade identification by comparison with published sequences (Barbrook 

et al. 2006). Because cp23S and microsatellite b7sym15 flanking region have been utilized in 

other studies, sequence data for these loci are readily available. This allowed us to perform 
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nucleotide BLAST (Altschul et al. 1990) searches for all haplotypes for these two loci on the 

NCBI website (http://www.ncbi.nlm.nih.gov) to identify the types of Symbiodinium present in 

our samples. Here, we only report matches with 100% coverage and 100% identity to 

Symbiodinium-type published sequences (see Appendix B, Tables 3.S2 and 3.S3 for all BLAST 

results). 

 

3.3.2. Geographical Differentiation 

 

We constructed haplotype networks for cp23S and b7sym15 using statistical parsimony 

implemented in TCS 1.21 (Clement et al. 2000). We specified maximum connection steps = 60, 

and treated gaps as a fifth state. We constructed a haplotype network for b2sym17 manually by 

separating each haplotype by repeat number variation. The geographic distributions of these 

haplotypes were then mapped onto the range. To more quantitatively explore whether 

Symbiodinium communities are geographically differentiated, we performed Analyses of 

Molecular Variance (AMOVA) implemented in GENODIVE 2.0b27 (Meirmans & Van 

Tienderen 2004) for all populations combined and for western North Atlantic and Mediterranean 

populations separately. We also used a Bayesian clustering analysis implemented in 

STRUCTURE 2.3.4 (Pritchard et al. 2000), and the Evanno method (Evanno et al. 2005) 

implemented in STRUCTURE HARVESTER (Earl & vonHoldt 2012) to detect significantly 

differentiated populations (K). We first analyzed all populations together, testing a range of K 

from 1–10, and then analyzed the western North Atlantic and Mediterranean populations 

separately (K=1–6). We ran the program for 1 million MCMC steps and discarded the first 

500,000 steps as burn-in. We used the more conservative admixture model with uncorrelated 

allele frequencies. We performed 10 iterations for each K. 

 

3.3.3. Symbiont-host Associations 

 

To test whether the pattern of differentiation we found for Symbiodinium was driven by 

coassociation with similarly differentiated hosts, we compared multi-locus genotypes of the 

algae to those of their coral host, which consisted of five variable nuclear genes totaling 1002 bp 

(Leydet & Hellberg 2015). We collapsed the host and symbiont multi-locus genotypes separately 

into bi-allelic locus genotypes, such that each unique multi-locus genotype had a unique two-

digit identifier represented twice to mimic a diploid locus. We did this to meet the format 

requirements of the program GENEPOP On The Web (Raymond & Rousset 1995; Rousset 

2008), which we used to perform genotypic linkage disequilibrium (option 2) to test whether the 

genotypes at one locus (host’s collapsed multi-locus genotypes) are independent from the 

genotypes at the other locus (symbiont’s collapsed multi-locus genotypes). 

 

To examine host-symbiont specificity at a broader scale, we compared the genetic clustering of 

Symbiodinium to the clustering of their coral host to see whether specific algal clusters are 

associated with specific host clusters. We ran STRUCTURE using the multi-locus genotypes for 

the hosts, whose algal symbionts we genotyped, using the same parameters as in Leydet & 

Hellberg (2015). We also used BARRIER version 2.2 (Manni et al. 2004), which implements an 

algorithm using pairwise FST, to more objectively identify and subsequently compare primary 

genetic barriers for both the coral host and algal symbiont (see Appendix B, Figure 3.S1 for 

additional information). 
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3.3.4. Environmental Correlations of Symbiont Community Composition 

 

To test whether geographical variation in patterns of Symbiodinium communities was correlated 

with habitat differences, we tested for associations between Symbiodinium community and three 

environmental variables: sea surface temperature, chlorophyll a concentration, and depth. We 

chose to investigate these factors because of their relatively easy accessibility, and/or because 

they have been previously shown to affect Symbiodinium community composition (see 

Introduction).  

 

We used STRUCTURE’s output for the most likely number of genetic clusters for Symbiodinium 

(K=3; Figure 3.2) and calculated the average probability of assignment to each genetic cluster for 

each population. We then plotted these assignment probabilities against four measures of 

temperature and chlorophyll a concentration for each location: at time of sampling, average 

annual, minimum annual, and maximum annual obtained from the NASA Earth Observations 

website (http://neo.sci.gsfc.nasa.gov/view.php?datasetId=MYD28M). The annual values were 

obtained for the year prior to sampling at each location, as these are the ranges of temperature 

and chlorophyll a concentration that the colonies endured most recently prior to being sampled 

and therefore likely have the greatest effect, if any, on Symbiodinium community composition. 

We also plotted assignment probabilities against the average, minimum, and maximum depths at 

which the colonies were sampled within each location (Appendix B, Table 3.S1).  

 

We examined whether fine-scale genetic clustering was correlated with habitat differences by 

analyzing the western North Atlantic and Mediterranean populations separately. For these 

analyses, we used the STRUCTURE results obtained when the two ranges were analyzed 

separately. We used the greatest number of genetic clusters that was geographically informative 

(K=3 for each; Figures 3.3b and 3.3d).  

 

We tested for significant correlations between genetic cluster assignments and environmental 

variables in GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego, 

California, USA). We performed multiple comparisons corrections according to the method 

described by Benjamini & Hochberg (1995). 

 

3.4. RESULTS 

 

The psbA coding region was nearly invariant, with 87% of the samples sharing the same 334 bp 

haplotype. This most common haplotype matched (100%) previously published Symbiodinium 

clade B sequences sampled from Bunodeopsis strumosa from France (accession number 

AJ884900), Diploria labyrinthiformis from Bermuda (AJ884898), and Madracis decactis from 

Bermuda (AJ884908) (Barbrook et al. 2006). The remaining haplotype variants included all 

samples from Daytona Beach (which differed from the most common haplotype by a single bp 

mutation), two samples from Cape Florida (which differed by an 83 bp deletion), and two 

Bermuda samples (which differed by a single bp mutation different from the one found in 

Daytona Beach). These haplotypes all closely matched clade B sequences, thus confirming that 

all of our coral samples harbored Symbiodinium from this clade. 
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At a finer level of resolution, BLAST searches of cp23S and b7sym15 haplotypes indicated that 

most haplotypes matched type B2, and in some cases more specifically Symbiodinium 

psygmophilum (within B2). However, some haplotypes from Cape Florida and Bermuda matched 

type B1, and in some cases more specifically S. minutum (within B1) (Figure 3.1; Appendix B, 

Tables 3.S2 and 3.S3). 

 

3.4.1. Genetic Diversity 

 

Oculina spp. colonies from the western North Atlantic harbored greater Symbiodinium diversity 

both within and between populations than did the Mediterranean populations (Figure 3.1). This is 

reflected by both the number of haplotypes and the presence of both types B2 and B1 in the 

western North Atlantic, while Mediterranean populations only harbored type B2. Eastern 

Mediterranean populations harbored slightly greater Symbiodinium diversity than western ones 

(Figure 3.1). All Spanish and Italian colonies (n=16) harbored a single Symbiodinium genotype, 

whereas Greece, Lebanon, and Israel (total n=49) harbored a total of nine Symbiodinium 

genotypes that varied within and across sampling locations and, in a few cases, within colonies. 

 

3.4.2. Geographical Differentiation 

 

We used haplotype networks (Figure 3.1), AMOVAs (Table 3.2), and STRUCTURE (Figures 

3.2 and 3.3) to examine whether Oculina corals harbor geographically distinct Symbiodinium 

communities across their range. AMOVA tests revealed significant subdivision of symbionts 

among all populations considered together (Table 3.2a). In contrast to their coral hosts (Leydet & 

Hellberg 2015), algal populations from the western North Atlantic were not significantly 

subdivided from Mediterranean populations. However, when Spain and Italy (the two 

westernmost Mediterranean populations) were grouped with the western North Atlantic 

populations, this larger group was differentiated from the eastern Mediterranean populations 

(Table 3.2a), suggesting that algal communities in the western Mediterranean are more 

genetically similar to those in the western North Atlantic. AMOVAs performed for the western 

North Atlantic and Mediterranean populations separately revealed significant subdivision among 

populations within both of these regions (Table 3.2b). 

 

When all populations were analyzed together using STRUCTURE, the most likely K was three 

(Figure 3.2). While geographical differentiation of the Symbiodinium communities was evident, 

there was no clear break between the western North Atlantic and Mediterranean populations as 

seen in the coral host (Figure 3.2). Instead, the western Mediterranean populations were 

genetically distinct from the eastern Mediterranean, and they were more genetically similar to the 

western North Atlantic. 

 

When the western North Atlantic populations were analyzed separately, the most likely K was 

two, with most algal genotypes from Cape Florida and Bermuda falling into a separate cluster 

from the rest of the western North Atlantic (Figure 3.3a). When K=3, Cape Florida and Bermuda 

were comprised of two admixed genetic clusters and harbored the most diversity (Figure 3.3b). 

When the Mediterranean populations were analyzed alone, the most likely K was 2, 

corresponding to western (Spain and Italy) and eastern (Greece, Lebanon, and Israel) clusters 

(Figure 3.3c). When K=3, most individuals from Greece fell into a distinct cluster (Figure 3.3d). 
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Figure 3.1. Haplotype maps showing the distribution and proportion of haplotypes across all 

populations for the three variable markers used in this study. Populations include North Carolina 

(NC, n=8), Daytona Beach (DAY, n=11), Cape Florida (CFL, n=9), Panama City (PAN, n=11), 

Bermuda (BER, n=13), Spain (SPA, n=14), Italy (ITA, n=2), Greece (GRE, n=18), Lebanon 

(LEB, n=4), and Israel (ISR, n=27) (Appendix B, Table 3.S1). For each marker, different colors 

represent different haplotypes. Pie graphs on the maps show the proportion of each haplotype 

found at each locality. Haplotype networks for each marker are also shown. We constructed 

haplotype networks for cp23S and b7sym15 using statistical parsimony implemented in TCS 

1.21. We specified maximum connection steps = 60, and treated gaps as a fifth state. The sizes of 

the circles are directly proportional to the haplotype frequencies, also indicated as percentages. 

Line segments connecting haplotypes represent a single mutational step separating the 

haplotypes, and small black dots represent inferred haplotypes not present in our data. We 

constructed a haplotype network for b2sym17 manually by separating each haplotype by repeat 

number variation. The blue haplotype not connected to the network lacks the microsatellite 

repeat. Haplotypes that match 100% to known published Symbiodinium-type sequences are 

indicated (see Appendix B, Tables 3.S2 and 3.S3 for all BLAST results). 
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Table 3.2. Analysis of molecular variance performed for all populations (a) and the western 

North Atlantic and Mediterranean populations separately (b). 

(a) Western North Atlantic 

vs. Mediterranean 

Western North Atlantic + 

Western Mediterranean  

vs. Eastern Mediterranean 

Source of variation %Variation F-value %Variation F-value 

Within populations 31.3 0.687 27.3 0.727 

Among populations 60.6 0.660 36.5 0.572 

Among groups 8.10 0.081 36.2 0.362 

(b) Western North Atlantic Mediterranean 

Source of variation %Variation F-value %Variation F-value 

Within populations 63.4 ––– 12.1 ––– 

Among populations 36.6 0.366 87.9 0.879 

Significant F-values (α level=0.05) are in bold. 
 

3.4.3. Symbiont-host Associations 

 

We next examined whether the genetic makeup of the host was associated with the geographical 

structuring in Symbiodinium communities. We found that the multi-locus genotypes of Oculina 

were independent from those of its Symbiodinium (p=0.655). In most cases, different Oculina 

spp. genotypes harbored similar Symbiodinium genotypes. However, in one case in Greece, two 

O. patagonica clones harbored distinct Symbiodinium genotypes. 

 

The genetic clustering of Symbiodinium was discordant with that of its host (Figure 3.2). In 

contrast to the host, the algal symbionts were not differentiated between the western North 

Atlantic and the Mediterranean, nor did they show similar subdivision within the western North 

Atlantic. They were, however, differentiated between the western and eastern Mediterranean. 

BARRIER corroborated our STRUCTURE results (see Appendix B, Figure 3.S1 for additional 

information).  

 

3.4.4. Environmental Correlations of Symbiont Community Composition 

 

We next examined whether habitat differences were associated with the geographical variation in 

Symbiodinium communities. For sea surface temperature, trends were largely similar across all 

four measures of temperature (Appendix B, Figure 3.S2); so we present only the results for 

temperature at time of sampling and average temperature. Furthermore, because the results for 

the western North Atlantic (Appendix B, Figure 3.S3) were similar to the results when all 

populations were analyzed together, we only present results for all populations here. When all 

populations were analyzed together, temperature explained at best 22% (p=0.177) of the genetic 

diversity of the Symbiodinium communities (Figure 3.4; Appendix B, Figure 3.S2), although 

these values were often far lower (0.1%, p=0.939). None of the correlations were significant, 

although there was a small but consistent trend of one genetic cluster (‘black’) increasing at the 
expense of another (‘white’) as temperature increased. When the western North Atlantic 

populations were analyzed separately, the trends were similarly weak (0.2%–73%) and not 

significant (p=0.067–0.942) (Appendix B, Figure 3.S3). Although the ‘gray’ genetic cluster was  
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Figure 3.2. STRUCTURE bar plots for the coral host (top) and their respective algal symbiont 

(bottom) when all populations were analyzed together. Individuals (bars) are grouped by 

populations along the x-axis, with the probability of assignment to a particular genetic cluster 

(represented by different shades) along the y-axis. The number of genetic clusters or populations 

(K) is shown for each analysis. Major differences in clustering breaks between host and symbiont 

are indicated with dark vertical lines. 

 

 
Figure 3.3. STRUCTURE bar plots for the algal symbiont when western North Atlantic (left) and 

Mediterranean (right) populations were analyzed separately. Individuals (bars) are grouped by 

populations along the x-axis, with the probability of assignment to a particular genetic cluster 

(represented by different shades) along the y-axis. The number of genetic clusters or populations 

(K) is shown for each analysis. 
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significantly negatively correlated with increased maximum temperature (p=0.034) (Appendix B, 

Figure 3.S3d), this trend was not consistent, nor did it remain significant after correcting for 

multiple comparisons. When the Mediterranean populations were analyzed separately, the 

correlation between the ‘white’ and ‘black’ genetic clusters and temperature became stronger, 
with temperature explaining 42%–93% of the variation (p=0.008–0.236) (Figure 3.4; Appendix 

B, Figure 3.S2). The correlation between the ‘black’ genetic cluster and temperature was 
significantly positive for all (p=0.008–0.023) but maximum annual temperature (p=0.061), 

results that withstood correcting for multiple comparisons. 

 

Overall, chlorophyll a concentration did not explain Symbiodinium community as well as 

temperature (Appendix B, Figure 3.S4). Although three correlations were significant, only one 

remained so following correction for multiple comparisons. The correlation that remained 

significant was a decrease in the ‘black’ genetic cluster with increased minimum annual 
chlorophyll a concentration in the Mediterranean (91%, p=0.011) (Appendix B, Figure 3.S4). 

 

Depth was the worst predictor variable. It explained at best 73% (p=0.067) of the Symbiodinium 

communities across all analyses (Appendix B, Figure 3.S5), although these values were often 

much lower (0.3%, p=0.933). Furthermore, none of the correlations were significant, and there 

were no consistent trends (Appendix B, Figure 3.S5). We note that nonlinear relationships did 

not significantly fit the data better (results not shown); therefore, we focus our results on simpler 

linear relationships. 

 

 
Figure 3.4. Correlation between Symbiodinium community composition and temperature (at 

sampling time and average annual) for all populations (a and b) and Mediterranean populations 

only (c and d). The white squares, gray triangles, and black circles represent the white, gray, and 

black genetic clusters, respectively, obtained from STRUCTURE analyses (Figure 3.2 for all 

populations; Figure 3.3d for Mediterranean). Trend lines are as follow: white= short dashed line, 

gray= large dashed line, black= solid line. Significant correlations are indicated with an asterisk. 
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3.5. DISCUSSION 

 

3.5.1. Oculina Corals Associate Largely with Symbiodinium Type B2 but also Type B1 

 

All of our Oculina spp. colonies harbored Symbiodinium clade B, in agreement with previous 

work (LaJeunesse et al. 2012; Rodolfo‐Metalpa et al. 2014; Rubio-Portillo et al. 2014a; 

Thornhill et al. 2008). The majority of the colonies harbored type B2, again consistent with 

earlier studies (Rodolfo‐Metalpa et al. 2014; Rubio-Portillo et al. 2014a; Thornhill et al. 2008). 

We also detected type B1 in several colonies from Cape Florida and Bermuda, which has 

previously been isolated from O. diffusa in Bermuda (LaJeunesse 2001). Identifying 

Symbiodinium species is challenging, given the long history and ongoing taxonomic revisions 

within the genus, and ultimately depends on a number of diagnostic genetic markers, including 

cp23S and b7sym15, and morphological characters (LaJeunesse et al. 2012; Parkinson et al. 

2015; Thornhill et al. 2013). Although this study did not employ the full set of diagnostic tools, 

we did find that some cp23S and b7sym15 haplotypes perfectly matched published sequences for 

S. psygmophilum (within B2) and S. minutum (within B1), suggesting at least tentative species 

identifications.  

 

Symbiodinium type B2 generally dominates in temperate corals (Thornhill et al. 2008) and tends 

to be rare in tropical habitats (LaJeunesse 2002; Thornhill et al. 2006a; Thornhill et al. 2006b). 

Type B2 isolated from hosts Astrangia poculata and Oculina sp. from the western North Atlantic 

is cold tolerant, with the ability to recover from low temperatures better than tropical types A3, 

B1, and C2 (Thornhill et al. 2008). This type is also resistant to short-term exposure to elevated 

temperatures (Rodolfo-Metalpa et al. 2008; Rodolfo-Metalpa et al. 2006; Shenkar et al. 2006). 

These physiological studies suggest that type B2 is able to endure a wide range of temperatures, 

which may facilitate the ability of Oculina corals to survive the variable temperatures they 

experience across their distribution. Type B1 has been shown to be more thermally sensitive than 

type B2 (McGinty et al. 2012), which may explain why we only detected it in two localities. 

 

3.5.2. Oculina's Symbiont Communities Vary Geographically 

 

Symbiodinium communities associated with Oculina corals vary geographically, and algal 

diversity is greater in western North Atlantic populations compared to Mediterranean 

populations (Figures 3.1 and 3.2). Within the western North Atlantic, Cape Florida and Bermuda 

harbor Symbiodinium communities genetically distinct from all other populations (Figure 3.3a), 

likely because these populations possess two Symbiodinium types (Figure 3.1). 

 

A stronger pattern of subdivision is evident within the Mediterranean, where we found a clear 

west versus east division (Figure 3.3c). This pattern may be due to greater thermal stress in the 

east. Eastern populations have endured annual bleaching events since they were first reported in 

this region over 20 years ago (Fine & Loya 1995; Fine et al. 2001; Rosenberg & Ben-Haim 

2002), while bleaching events in western populations have only been reported in the last 5 years 

(Rubio-Portillo et al. 2014c). Furthermore, O. patagonica colonies in the east show increased 

tolerance to bleaching following an initial bleaching event (Armoza-Zvuloni et al. 2011). These 

differences in thermal conditions may have led to differences in Symbiodinium communities, 

whereby eastern populations that recover from annual bleaching events acquire local strains from 
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the environment that are genetically distinct from western strains. We also found greater 

Symbiodinium diversity in the eastern Mediterranean compared to the west. On the one hand, this 

increased diversity may help corals cope with environmental stresses. On the other, greater 

Symbiodinium diversity associated with thermal stress is contrary to studies showing that thermal 

stress reduces symbiont diversity (Fabricius et al. 2004; Rowan et al. 1997). Future work is 

needed to elucidate the factors driving these differences in diversity between regions. 

 

3.5.3. Temperature Better Correlates with Symbiodinium’s Geographical Variation than 

Host Genetics, Chlorophyll a Concentration, or Depth 

 

Genetic differentiation of the coral host did not correlate with Symbiodinium community 

composition. We found no associations between multi-locus genotypes of Oculina spp. and their 

Symbiodinium, nor did we find matching geographical structuring within Symbiodinium and its 

host (Figure 3.2). Oculina spp. populations in the western North Atlantic and the Mediterranean 

show a clear genetic break (Figure 3.2; Appendix B, Figure 3.S1; (Leydet & Hellberg 2015), 

which was not observed in the symbiont. Instead, western Mediterranean populations of O. 

patagonica harbor symbionts that are more genetically similar to the western North Atlantic than 

the eastern Mediterranean. Eytan et al. (2009) found a genetic division between northern and 

southern Oculina spp. populations in the western North Atlantic, but no such division was 

evident within Symbiodinium. Finally, O. patagonica harbors geographically structured 

Symbiodinium type B2 in the Mediterranean, despite being genetically similar across this range 

(Figure 3.2; Appendix B, Figure 3.S1; (Leydet & Hellberg 2015). 

 

The lack of congruence between host and symbiont geographical variation may reflect the 

facultative relationship between Oculina corals and their algal symbionts. Indeed, obligate 

symbionts often coevolve with their hosts (e.g., (Bongaerts et al. 2010; Prada et al. 2014; Symula 

et al. 2011). However, even some obligate coral-algal symbioses show discordant geographical 

variation between partners (Baums et al. 2010; Baums et al. 2014; Keshavmurthy et al. 2012; 

Pettay et al. 2011), often associated with different environmental conditions (Baums et al. 2010; 

Keshavmurthy et al. 2012). For example, while the coral Platygyra verweyi shows no genetic 

differentiation among populations, its Symbiodinium composition varies geographically; corals 

near a hot-water discharge are dominated by the heat-tolerant type D1a, and the abundance of the 

heat-sensitive type C3 increases with distance from the discharge (Keshavmurthy et al. 2012). 

These differences are attributed to the coral’s ability to acclimate to thermal stress by harboring 
heat-tolerant Symbiodinium. Such findings suggest that for corals and other organisms with long 

generation times that can only slowly generate adaptive genetic diversity within their own 

genomes, variation in their symbionts may provide a quicker way to respond to local 

environmental conditions (Baker et al. 2004; Rosenberg et al. 2007). 

 

Indeed, the patterns of Symbiodinium diversity and geographical structuring (particularly within 

the Mediterranean) suggest that these communities within Oculina corals may be shaped by local 

environmental conditions facing these corals. Overall, temperature explained Symbiodinium 

communities better than chlorophyll a concentration and depth, in terms of both significance and 

consistency of the observed trends (Figure 3.4). We therefore focus our discussion on 

temperature, while recognizing that environmental variables often covary, and that testing for 
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casual relationships between environmental variables and community composition will require 

controlled experiments.  

 

We found strong correlations between temperature and Oculina-associated Symbiodinium 

communities within the Mediterranean, where temperature explained as much as 93% of the 

variation. Despite a strong latitudinal pattern in temperature variation, no such correlation was 

evident in the western North Atlantic. The difference in associations between the western North 

Atlantic and Mediterranean regions may be due to host background, since it is the combination 

of host and algal symbiont (the holobiont) that is or is not well suited to a particular habitat 

(Parkinson & Baums 2014). The high intraspecific variation and geographical subdivision of 

western North Atlantic Oculina spp. host populations may leave little opportunity for their 

symbiont communities to adapt to local differences in temperature. However, O. patagonica is 

genetically uniform across the Mediterranean. This simplified host background may have 

selected for a stronger association between symbiont community and temperature. 

 

As facultative zooxanthellate corals, Oculina spp. are readily found in an azooxanthellate state 

both in the western North Atlantic (Reed 1981) and in the Mediterranean (Fine et al. 2001; 

Koren & Rosenberg 2006). Given the loose dependence of Oculina corals on their algal 

symbionts, we might expect their Symbiodinium communities to be random. However, our 

findings suggest that the Symbiodinium communities harbored by Oculina corals, particularly O. 

patagonica, may instead reflect acclimatization to varying environmental conditions. This shows 

that Symbiodinium may be integral members of the holobiont even for corals who can survive 

without them (Dimond & Carrington 2007; Dimond et al. 2013). 

 

Given that temperature and geographical distance are correlated in the Mediterranean 

(temperature increases toward the east), the symbiont-temperature trends we observed could be 

driven by geographical distance. One way to address this would be to test whether Symbiodinium 

communities fluctuate seasonally within localities. Common garden thermal stress experiments 

would also be valuable for controlling for host genotype and other microbial communities, and 

testing whether Symbiodinium communities fluctuate with varying temperatures. 

 

While the trends we observed suggest that temperature may play a role in structuring 

Symbiodinium communities associated with O. patagonica in the Mediterranean, the question 

remains whether this genetic diversity and structure reflects any physiological differences for the 

holobiont. Rodolfo-Metalpa et al. (2014) investigated whether O. patagonica from localities 

experiencing different temperature regimes varied in their thermal performance. Despite 

observing physiological differences in situ, laboratory thermal experiments showed little support 

for substantial geographical variation in host and symbiont physiology in response to 

temperature variation. However, other environmental factors, such as light intensity, food 

shortage, and ambient nutrient levels may also be factors driving differences in stress response 

(Rodolfo‐Metalpa et al. 2014; Rubio-Portillo et al. 2014b). Studies that include multiple 

manipulated environmental stresses that better reflect natural conditions though challenging are 

needed to better examine the casual link between Symbiodinium diversity and physiological 

response to stress. 
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In conclusion, we found that Oculina corals harbor different Symbiodinium communities across 

their geographical range and that environmental differences, particularly sea surface temperature, 

appear to be better correlated with this geographical variation than the coral host’s genetics. This 
study suggests that for facultative zooxanthellate corals the Symbiodinium communities that they 

harbor, although not tightly linked to their host’s genetics, may reflect acclimatization to local 
environmental conditions. 

 

3.6. AVAILABILITY OF DATA 

 

All algal sequences have been deposited in GenBank (b7sym15 Accession Numbers: KT193928–
KT194047) and The European Nucleotide Archive (psbA coding, cp23S, b2sym17 Accession 

Numbers: LN869546–LN869907). 

 

3.7. REFERENCES 

 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search 

tool. Journal of molecular biology 215, 403-410. 

Armoza-Zvuloni R, Segal R, Kramarsky-Winter E, Loya Y (2011) Repeated bleaching events 

may result in high tolerance and notable gametogenesis in stony corals: Oculina 

patagonica as a model. Marine Ecology Progress Series 426, 149-159. 

Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the 

reproductive biology of scleractinian corals. Annual Review of Ecology, Evolution, and 

Systematics 40, 551-571. 

Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: Corals' adaptive response 

to climate change. Nature 430, 741-741. 

Barbrook AC, Visram S, Douglas AE, Howe CJ (2006) Molecular diversity of dinoflagellate 

symbionts of Cnidaria: the psbA minicircle of Symbiodinium. Protist 157, 159-171. 

Baums I, Johnson M, Devlin-Durante M, Miller M (2010) Host population genetic structure and 

zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract 

and wider Caribbean. Coral Reefs 29, 835-842. 

Baums IB, Devlin‐Durante MK, LaJeunesse TC (2014) New insights into the dynamics between 

reef corals and their associated dinoflagellate endosymbionts from population genetic 

studies. Molecular ecology 23, 4203-4215. 

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. Journal of the Royal Statistical Society. Series B 

(Methodological) 57, 289-300. 

Berkelmans R, Van Oppen MJ (2006) The role of zooxanthellae in the thermal tolerance of 

corals: a "nugget of hope" for coral reefs in an era of climate change. Proceedings of the 

Royal Society B: Biological Sciences 273, 2305-2312. 



 

53 

 

Bongaerts P, Riginos C, Ridgway T, et al. (2010) Genetic divergence across habitats in the 

widespread coral Seriatopora hystrix and its associated Symbiodinium. PloS one 5, 

e10871. 

Bourne DG, Garren M, Work TM, et al. (2009) Microbial disease and the coral holobiont. 

Trends in Microbiology 17, 554-562. 

Brooke S, Young C (2005) Embryogenesis and larval biology of the ahermatypic scleractinian 

Oculina varicosa. Marine Biology 146, 665-675. 

Brooke S, Young CM (2003) Reproductive ecology of a deep-water scleractinian coral, Oculina 

varicosa, from the southeast Florida shelf. Continental Shelf Research 23, 847-858. 

Chen CA, Wang J-T, Fang L-S, Yang Y-W (2005) Fluctuating algal symbiont communities in 

Acropora palifera (Scleractinia: Acroporidae) from Taiwan. Marine Ecology Progress 

series 295, 113-121. 

Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene 

genealogies. Molecular ecology 9, 1657-1659. 

Dimond J, Carrington E (2007) Temporal variation in the symbiosis and growth of the temperate 

scleractinian coral Astrangia poculata. Marine Ecology Progress Series 348, 161-172. 

Dimond J, Kerwin A, Rotjan R, et al. (2013) A simple temperature-based model predicts the 

upper latitudinal limit of the temperate coral Astrangia poculata. Coral reefs 32, 401-

409. 

Drummond AJ, Ashton B, Cheung M, et al. (2010) Geneious version 4.5.5. Available from URL: 

http://www.geneious.com. 

Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for 

visualizing STRUCTURE output and implementing the Evanno method. Conservation 

Genetics Resources 4, 359-361. 

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the 

software STRUCTURE: a simulation study. Molecular ecology 14, 2611-2620. 

Eytan RI, Hayes M, Arbour-Reily P, Miller M, Hellberg ME (2009) Nuclear sequences reveal 

mid‐range isolation of an imperilled deep‐water coral population. Molecular ecology 18, 

2375-2389. 

Fabricius K, Mieog J, Colin P, Idip D, Van Oppen M (2004) Identity and diversity of coral 

endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, 

temperature and shading histories. Molecular ecology 13, 2445-2458. 

Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a 

symbiotic coral. Bioscience 34, 705-709. 



 

54 

 

Fine M, Loya Y (1995) The coral Oculina patagonica: a new immigrant to the Mediterranean 

coast of Israel. Israel Journal of Zoology 41, 81. 

Fine M, Zibrowius H, Loya Y (2001) Oculina patagonica: a non-lessepsian scleractinian coral 

invading the Mediterranean Sea. Marine Biology 138, 1195-1203. 

Finney JC, Pettay DT, Sampayo EM, et al. (2010) The relative significance of host–habitat, 

depth, and geography on the ecology, endemism, and speciation of coral endosymbionts 

in the genus Symbiodinium. Microbial Ecology 60, 250-263. 

Glynn PW (1984) Widespread coral mortality and the 1982–83 El Niño warming event. 

Environmental Conservation 11, 133-146. 

Harvell CD, Mitchell CE, Ward JR, et al. (2002) Climate warming and disease risks for 

terrestrial and marine biota. Science 296, 2158-2162. 

Howells E, Beltran V, Larsen N, et al. (2012) Coral thermal tolerance shaped by local adaptation 

of photosymbionts. Nature Climate Change 2, 116-120. 

Iglesias-Prieto R, Trench RK (1997) Acclimation and adaptation to irradiance in symbiotic 

dinoflagellates II. Response of chlorophyll-protein complexes to different photon-flux 

densities. Marine Biology 130, 23-33. 

Jones AM, Berkelmans R, van Oppen MJ, Mieog JC, Sinclair W (2008) A community change in 

the algal endosymbionts of a scleractinian coral following a natural bleaching event: field 

evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences 

275, 1359-1365. 

Keshavmurthy S, Hsu CM, Kuo CY, et al. (2012) Symbiont communities and host genetic 

structure of the brain coral Platygyra verweyi, at the outlet of a nuclear power plant and 

adjacent areas. Molecular ecology 21, 4393-4407. 

Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina 

patagonica in summer and winter. Applied and Environmental Microbiology 72, 5254-

5259. 

LaJeunesse T (2002) Diversity and community structure of symbiotic dinoflagellates from 

Caribbean coral reefs. Marine Biology 141, 387-400. 

LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic 

dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” 

level marker. Journal of Phycology 37, 866-880. 

LaJeunesse TC, Bhagooli R, Hidaka M, et al. (2004) Closely related Symbiodinium spp. differ in 

relative dominance in coral reef host communities across environmental, latitudinal and 

biogeographic gradients. Marine Ecology Progress Series 284, 147-161. 



 

55 

 

LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics‐based description of Symbiodinium 

minutum sp. nov. and S. psygmophilum sp. nov.(Dinophyceae), two dinoflagellates 

symbiotic with cnidaria. Journal of Phycology 48, 1380-1391. 

Leydet KP, Hellberg ME (2015) The invasive coral Oculina patagonica has not been recently 

introduced to the Mediterranean from the western Atlantic. BMC Evolutionary Biology 

15. 

Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) 

variation: how barriers can be detected by using Monmonier's algorithm. Human biology 

76, 173-190. 

McGinty ES, Pieczonka J, Mydlarz LD (2012) Variations in reactive oxygen release and 

antioxidant activity in multiple Symbiodinium types in response to elevated temperature. 

Microbial Ecology 64, 1000-1007. 

Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the 

analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792-794. 

Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor 

environments. Bioscience 27, 454-460. 

Parkinson JE, Baums IB (2014) The extended phenotypes of marine symbioses: ecological and 

evolutionary consequences of intraspecific genetic diversity in coral-algal associations. 

Frontiers in Microbiology 5, 445. 

Parkinson JE, Coffroth MA, LaJeunesse TC (2015) New species of Clade B Symbiodinium 

(Dinophyceae) from the greater Caribbean belong to different functional guilds: S. 

aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. 

pseudominutum sp. nov. Journal of Phycology 51, 850-858. 

Pettay DT, Lajeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized 

for Caribbean corals in the genus Madracis. Molecular Ecology Notes 7, 1271-1274. 

Pettay DT, Wham DC, Pinzon JH, Lajeunesse TC (2011) Genotypic diversity and spatial–
temporal distribution of Symbiodinium clones in an abundant reef coral. Molecular 

ecology 20, 5197-5212. 

Pinzon JH, LaJeunesse TC (2011) Species delimitation of common reef corals in the genus 

Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis 

ecology. Molecular ecology 20, 311-325. 

Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera 

in Hawai’i. Molecular Phylogenetics and Evolution 56, 492-497. 

Pochon X, Putnam HM, Gates RD (2014) Multi-gene analysis of Symbiodinium dinoflagellates: 

a perspective on rarity, symbiosis, and evolution. PeerJ 2, e394. 



 

56 

 

Prada C, McIlroy SE, Beltrán DM, et al. (2014) Cryptic diversity hides host and habitat 

specialization In a gorgonian‐algal symbiosis. Molecular ecology 23, 3330-3340. 

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus 

genotype data. Genetics 155, 945-959. 

Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact 

tests and ecumenicism. Journal of Heredity 86, 248-249. 

Reed JK (1981) In situ growth rates of the scleractinian coral Oculina varicosa occurring with 

zooxanthellae on 6-m reefs and without on 80-m banks. Proceeding of the 4th 

International Coral Reef Symposium 2, 201-206. 

Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in 

symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Nat Acad Sci 

USA 105, 13674-13678. 

Rodolfo-Metalpa R, Reynaud S, Allemand D, Ferrier-Pagès C (2008) Temporal and depth 

responses of two temperate corals, Cladocora caespitosa and Oculina patagonica, from 

the North Mediterranean Sea. Marine Ecology Progress Series 369, 103-114. 

Rodolfo-Metalpa R, Richard C, Allemand D, et al. (2006) Response of zooxanthellae in 

symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica 

to elevated temperatures. Marine Biology 150, 45-55. 

Rodolfo‐Metalpa R, Hoogenboom MO, Rottier C, et al. (2014) Thermally tolerant corals have 

limited capacity to acclimatize to future warming. Global Change Biology 20, 3036-

3049. 

Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. 

Environmental Microbiology 4, 318-326. 

Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of 

microorganisms in coral health, disease and evolution. Nature Reviews Microbiology 5, 

355-362. 

Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for 

Windows and Linux. Molecular Ecology Resources 8, 103-106. 

Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates 

variation in episodes of coral bleaching. Nature 388, 265-269. 

Rubio-Portillo E, Souza-Egipsy V, Ascaso C, et al. (2014a) Eukarya associated with the stony 

coral Oculina patagonica from the Mediterranean Sea. Marine genomics 17, 17-23. 

Rubio-Portillo E, Vázquez-Luis M, Valle C, Izquierdo-Muñoz A, Ramos-Esplá AA (2014b) 

Growth and bleaching of the coral Oculina patagonica under different environmental 

conditions in the western Mediterranean Sea. Marine Biology 161, 2333-2343. 



 

57 

 

Rubio-Portillo E, Yarza P, Peñalver C, Ramos-Esplá AA, Antón J (2014c) New insights into 

Oculina patagonica coral diseases and their associated Vibrio spp. communities. The 

ISME journal 8, 1794-1807. 

Santos SR, Gutierrez-Rodriguez C, Coffroth MA (2003) Phylogenetic identification of symbiotic 

dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit 

(cp23S)—ribosomal DNA sequences. Marine Biotechnology 5, 130-140. 

Santos SR, Taylor DJ, Kinzie Iii RA, et al. (2002) Molecular phylogeny of symbiotic 

dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. 

Molecular Phylogenetics and Evolution 23, 97-111. 

Shenkar N, Fine M, Kramarsky-Winter E, Loya Y (2006) Population dynamics of zooxanthellae 

during a bacterial bleaching event. Coral Reefs 25, 223-227. 

Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and 

scleractinian hosts—Symbiosis, diversity, and the effect of climate change. Perspectives 

in Plant Ecology, Evolution and Systematics 8, 23-43. 

Stat M, Loh WKW, LaJeunesse TC, Hoegh-Guldberg O, Carter DA (2009) Stability of coral–
endosymbiont associations during and after a thermal stress event in the southern Great 

Barrier Reef. Coral Reefs 28, 709-713. 

Stat M, Pochon X, Franklin EC, et al. (2013) The distribution of the thermally tolerant symbiont 

lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the 

history of ocean thermal stress. Ecology and Evolution 3, 1317-1329. 

Symula RE, Marpuri I, Bjornson RD, et al. (2011) Influence of host phylogeographic patterns 

and incomplete lineage sorting on within-species genetic variability in Wigglesworthia 

species, obligate symbionts of tsetse flies. Applied and Environmental Microbiology 77, 

8400-8408. 

Szmant A, Gassman N (1990) The effects of prolonged “bleaching” on the tissue biomass and 

reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217-224. 

Tambutté S, Holcomb M, Ferrier-Pagès C, et al. (2011) Coral biomineralization: from the gene 

to the environment. Journal of Experimental Marine Biology and Ecology 408, 58-78. 

Tchernov D, Gorbunov MY, de Vargas C, et al. (2004) Membrane lipids of symbiotic algae are 

diagnostic of sensitivity to thermal bleaching in corals. Proceedings of the National 

Academy of Sciences of the United States of America 101, 13531-13535. 

Thornhill DJ, Fitt WK, Schmidt GW (2006a) Highly stable symbioses among western Atlantic 

brooding corals. Coral Reefs 25, 515-519. 

Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between 

cold tolerance and temperate biogeography in a western Atlantic Symbodinium 

(Dinophyta) lineage. Journal of Phycology 44, 1126-1135. 



 

58 

 

Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006b) Multi-year, seasonal 

genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching 

reversion. Marine Biology 148, 711-722. 

Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR (2013) Population genetic data of a 

model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored 

introductions across ocean basins. Molecular ecology 22, 4499-4515. 

Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species 

complex: patterns of distribution of four taxa of Symbiodinium on different reefs and 

across depths. The Biological Bulletin 201, 348-359. 

 



59 

 

CHAPTER 4. 

HOST-TARGETED RAD-SEQ REVEALS GENETIC CHANGES 

ASSOCIATED WITH RANGE EXPANSION OF OCULINA PATAGONICA 

ALONG THE SPANISH MEDITERRANEAN COAST 
 

4.1. ABSTRACT 

 

Many organisms are expanding their current ranges in response to changing environmental 

conditions. Understanding the patterns of genetic diversity and adaptation along an expansion 

front is crucial to assessing a species’ long-term success. While new next-generation sequencing 

techniques can reveal these changes in fine detail, ascribing these to the evolutionary response of 

a particular species can be difficult for organisms that live in close association with symbionts. 

Using a modified restriction-site associated DNA sequencing (RAD-Seq) protocol to target coral 

DNA, we collected 595 coral-specific single nucleotide polymorphisms (SNPs) from 189 

colonies of the invasive coral Oculina patagonica from across the entire Mediterranean coast of 

Spain, which included established core populations and two recent expansion fronts. 

Surprisingly, populations from the more recent northern expansion populations are genetically 

distinct from the westward expansion populations and the core populations, and also harbor 

greater genetic diversity than either of them. Generalized linear models relating genetic structure 

to environmental variables suggest that temperature appears to have driven adaptation along the 

northern expansion, but not toward the west. Tests for selection found one candidate gene 

associated with temperature in the northward expansion, but none in the west. We found no 

evidence of local adaptation to artificial substrate, which has been proposed for explaining the 

rapid spread of O. patagonica, suggesting that this coral is simply an opportunistic colonizer of 

free space made available by coastal habitat modifications. Together, these results suggest that 

unique genetic variation and adaptation to local temperatures along the northern expansion front, 

but not the westward expansion, may have facilitated the poleward range expansion of O. 

patagonica in the western Mediterranean. 

 

4.2. INTRODUCTION 

 

In the face of current global environmental change, organisms may prove unable to cope and 

undergo decline (Gibbons et al. 2000; Møller et al. 2008; Pounds et al. 1999). Alternatively, they 

may evolve in situ and adapt to climatic change (Anderson et al. 2012; Franks et al. 2007; Jensen 

et al. 2008). Finally, they may shift their range to more suitable habitat, which may subsequently 

lead to local adaptation within the new range (Booth et al. 2011; Hickling et al. 2006; Parmesan 

et al. 1999; Sorte et al. 2010). Understanding how organisms respond to environmental changes 

is crucial to evaluating their capacity to persist especially with global climate change. 

 

Many species, both native and non-native, are expanding their ranges in response to increasing 

temperatures (Cavanaugh et al. 2014; Serrano et al. 2013c; Yamano et al. 2011). Species 

expanding their ranges face challenges. First, invasive species must disperse and establish in a 

new region. Second, population bottlenecks associated with colonization and establishment may 

lead to reduced genetic diversity, potentially limiting their ability to adapt and persist (Frankham 

& Ralls 1998; Lee 2002). This genetic paradox in invasive species (i.e., how bottlenecked 
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populations can still become successful) has intrigued researchers, who continue to explore 

possible mechanisms underlining this mystery (Allendorf & Lundquist 2003; Frankham 2005). 

 

Understanding the genetic diversity underlying an expansion can help shed light on the 

evolutionary response to novel environments during the expansion process, as can identifying 

putative genes targeted by selection in the newly expanded populations. Linking the function of 

particular genetic changes to environmental variables can also reveal the ecological forces 

underpinning evolutionary change (Buckley et al. 2012). While examining multiple successful 

range expansions can reveal general underlying driving forces facilitating successful expansions 

(Hodgins et al. 2015; White et al. 2013), comparing a successful expansion with a less successful 

one (i.e., where populations are not as thriving) can elucidate particular region-specific genetic 

mechanisms and environmental factors associated with successful evolutionary change during an 

expansion (Dlugosch & Parker 2008). 

 

High-throughput sequencing approaches have greatly improved our understanding of range 

expansions by identifying genetic signatures of adaptation associated with expansion (White et 

al. 2013; Zenni & Hoban 2015) and environmental factors driving local adaptation (Buckley et 

al. 2012). The development of high-throughput sequencing of reduced-representation libraries, 

such as genotyping-by-sequencing and restriction-site associated DNA sequencing (RAD-Seq), 

has allowed researchers to collect hundreds to thousands of single nucleotide polymorphisms 

(SNPs) for multiple samples from multiple populations without a reference genome. Basic 

genotyping-by-sequencing methods sequence all of the DNA extracted from a sample. However, 

many animals and plants are now recognized as holobionts, consisting of a host and communities 

of microbial symbionts (Rosenberg & Zilber-Rosenberg 2013). Consequently, for organisms that 

harbor endosymbionts, such as corals, reduced-representation libraries can be contaminated with 

unwanted symbiont DNA, thus allocating time, money, and sequence data to the wrong organism 

and resulting in low coverage across host contigs (Leese et al. 2012; Toonen et al. 2013). 

Furthermore, symbiont variation or switching may provide a more rapid and versatile way to 

respond to environmental conditions than genetic mutation and selection of the host itself 

(Rosenberg et al. 2007; Rosenberg & Zilber-Rosenberg 2011). If not accounted for during next-

generation sequencing methods, measures of genetic diversity and selection may be confounded 

due to aberrant sequencing and analyses of symbiont loci. Therefore, new next-generation 

sequencing techniques are necessary to target host DNA and separate its evolutionary response 

from that of its symbionts. 

 

The coral Oculina patagonica was thought to have been introduced into the Mediterranean in the 

mid-20th century (Fine et al. 2001; Zibrowius 1974), however recent genetic work suggests it 

has had a far longer history in the eastern Atlantic (Leydet & Hellberg 2015). At odds with this 

long history, it was only first reported from the Mediterranean in 1973 (Zibrowius & Ramos 

1983) off the coast of Spain. Since then it has quickly expanded along the entire Spanish coast, 

possibly due to increased sea surface temperatures and coastal habitat modifications (Rubio-

Portillo et al. 2014; Serrano et al. 2013c). Based on abundance and size structure (Serrano et al. 

2013a, b; Serrano et al. 2013c)( R. Comas & M. Ribes unpublished data), populations of O. 

patagonica along the southeastern coast of Spain (SOE) are believed to make up the core zone of 

Spanish establishment (Figure 4.1). From there, O. patagonica appears to have expanded 

westward into the Alboran Sea (ALB), although population densities there suggest only modest 
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success. A more recent northern expansion along the Catalan coast has been more successful, 

with colonies rapidly increasing in abundance and density (Serrano et al. 2013c; Terrón-Sigler et 

al. 2015) ( R. Comas & M. Ribes unpublished data). This dual colonization allows us the 

opportunity to genetically compare two expansions with different levels of success. 

 

Here we investigate the range expansion of O. patagonica along the Spanish coast using a 

modified RAD-Seq protocol to enrich for coral DNA. We ask: 1) Are the two expansions 

genetically similar or different, and do they exhibit reduced genetic diversity relative to the core 

populations? 2) Is geographic distance or environmental variation (temperature and/or substrate 

use) driving patterns of genetic diversity along the expansions? and 3) Are any genes under 

selection and potentially facilitating the expansions, and are they the same for both fronts? 

 

4.3. METHODS 

 

4.3.1. Sampling and Sequencing 

 

Oculina patagonica samples were collected between August 20-31, 2014 from 14 localities 

spanning their distribution along the Mediterranean coast of Spain (Figure 4.1, Table 4.1). We 

obtained 13 samples from each site except for the northernmost (site 14 in Fig. 4.1), from which 

20 were collected. Although O patagonica is found on both natural and artificial substrate 

throughout the Spanish coast (Rubio-Portillo et al. 2014; Serrano et al. 2013c; Terrón-Sigler et 

al. 2015), in this study, samples from all but two sites (10 and 13 in Fig. 4.1) came from natural 

substrate. Depth of each sample was also noted at time of collection and averaged for all samples 

analyzed from each site (Table 4.1). Sea surface temperatures at each location were measured at 

the time of sampling. 

 

For this study, populations were grouped into four zones based on survey data from Serrano et 

al. (2013a,b,c)(R. Comas & M. Ribes unpublished data). They found that of the surveyed 

locations (n=90), colonies of O. patagonica were present in 95% of locales on the southeastern 

coast, with occurrence decreasing to 50% in the Alboran Sea, and as low as 45% along the 

northeastern Spanish coast. Furthermore, colonies along the Catalan coast (most north) have 

been well monitored for 19 years (Serrano et al. 2013c). In this region, abundance of O. 

patagonica increased from being present in only one location in 1992 to colonizing 19% of the 

surveyed locations in 2010. These data suggest that populations along the southeastern coast 

(SOE) are core populations, populations in the Alboran Sea (ALB) represent a westward 

expansion from the core, and northeastern (NOE) and Catalan (CAT) populations represent a 

northern expansion from the core. 

 

Colonies were sampled via SCUBA, breaking off a 2 cm
2
 piece of live tissue and preserving it in 

95% ethanol. We also obtained a “symbiont-free” Oculina sp. sample lacking algal 

endosymbionts (Symbiodinium) from a deep-water (80 m) population off the southeastern coast 

of North America (Eytan et al. 2009). This sample was necessary to target coral-specific 

sequence reads (see below). Based on five nuclear genes, the level of sequence divergence 

between Oculina spp. from this deep population (Oculina Banks) and a Spanish population 

(Cabo de Palos) is about 0.02 nucleotide substitutions per site (Leydet & Hellberg 2015), 

demonstrating its genetic similarity to our target species. 
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Figure 4.1. Map of the collection sites along the Mediterranean coast of Spain, by zone and site 

number (Table 4.1). Populations 4-6 in SOE (Southeast) are considered the core populations. 

Populations 1-3 in ALB (Alboran Sea) represent the westward expansion, while populations 7-9 

in NOE (Northeast) and 10-14 in CAT (Catalan coast) represent the northern expansion, CAT 

being more recent. The 1
st
 reported site is the Alicante Harbor where O. patagonica was first 

reported in Spain in 1973 (samples not collected). The dashed line at Ebro Delta represents the 

northern limit of well-established populations. The asterisks associated with sites 10 and 13 

indicate that samples from these sites were sampled from artificial substrate. The Almeria-Oran 

Front (AOF) and Ibiza Channel (IC) are indicated. 

 

We extracted genomic DNA from the samples using the QIAGEN DNeasy Kit following the 

manufacture's protocols with the following modifications: we allowed tissues to lyse at 56˚C 
overnight; immediately following lysis samples were treated with RNase A (4 μl of 100 mg/ml) 

(QIAGEN) and then incubated for 2 minutes at room temperature; and DNA was eluted in 200 μl 
of AE buffer after incubation at room temperature for an hour to maximize DNA yield. Species 

identification was confirmed by sequencing the mitochondrial cytochrome oxidase I (COI) gene 

using previously deigned primers (Folmer et al. 1994) and protocols (Leydet & Hellberg 2015). 

 

To prescreen for potential clonemates, we sequenced a variable nuclear marker (p14: fatty acid 

elongase; 206 bp; Leydet & Hellberg 2015). During the p14 screening, a sample collected from 

Barcelona (site 13) was identified as the Mediterranean native coral Cladocora caespitosa. We 

used this sample as well as four C. caespitosa colonies from Pantelleria Island to test for possible 

hybridization between this species and O. patagonica (see below and Appendix C, Figure 4.S5
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Table 4.1. Collection sites. Site numbers correspond to those in Figure 4.1. SOE (Southeast) is considered the core zone. ALB 

(Alboran Sea) represents the westward expansion, while NOE (Northeast) and CAT (Catalan coast) represent the northern expansion. 

Zone Site n
a
 n

b
 Substrate Latitude Longitude depth

c
 T

d
 

ALB 1. Torrox 13 13 natural 36°43'34"N 3°57'16"W 1.0 26 

2. Sacratif 13 12 natural 36°41'40"N 3°27'55"W 2.4 27 

3. Punta peña del Moro 13 11 natural 36°41'53"N 2°51'30"W 2.8 27 

SOE 4. Carboneras 13 11 natural 36°59'40"N 1°53'21"W 1.4 28 

5. Cabo Cope 13 9 natural 37°25'39"N 1°30'03"W 1.2 27 

6. Muelle del Curra 13 11 natural 37°35'16"N 0°58'33"W 1.9 27 

NOE 7. La Zenia 13 6 natural 37°55'03"N 0°43'12"W 0.9 27 

8. Xàbia 13 10 natural 38°45'51"N 0°13'26"E 2.2 27 

9. Alcossebre 13 7 natural 40°15'33"N 0°18'11"E 1.8 26 

CAT 10*. L'Ampolla 13 13 artificial 40°48'29"N 0°42'39"E 3.6 26 

11. Roca de l'Illot 13 13 natural 40°50'49"N 0°45'24"E 2.6 26 

12. Torredembarra 13 13 natural 41°08'34"N 1°24'53"E 2.6 26 

13*. Barcelona 13 13 artificial 41°17'43"N 2°09'09"E 6.1 26 

14
†
. Roca Muladera, 

Es Bullents, 

Fenals, 

Punta Santa Ana, 

Sa Palomera 

20 19 natural 41°41'39"N 2°50'42"E 8.0 22 

a
 number of samples collected and sequenced (n=189) 

b
 number of samples analyzed (n=161) 

c
 average sampling depth (meters) of samples analyzed 

d
 temperature at time of sampling (˚C) 

* sampled from artificial substrate 
†
 also referred to as ‘Northernmost population’
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for additional details). Sequencing was performed using BigDye chemistry v3.1 on an ABI 

3130XL at the Louisiana State University Genomics Facility. 

 

The “symbiont-free” status of the deep Oculina sp. sample was verified by attempted PCR 

amplification of several alga-specific markers: ITS2 (LaJeunesse 2002), psbA minicircle coding 

region (Barbrook et al. 2006), cp23S–rDNA domain V (Santos et al. 2002), and the flanking 

region of the microsatellite marker B7SYM15 (Pettay & Lajeunesse 2007). The lack of 

amplicons confirmed that no Symbiodinium was present in the “symbiont-free” coral sample. 

 

DNA quantification and concentration of all samples was determined using NanoDrop and Qubit 

2.0 Fluorometer at the LSU Genomics Facility. Samples were submitted to SNPsaurus (Eugene, 

OR) and sequenced using a modified RAD-Seq protocol. Because Oculina often harbor 

endosymbiotic algae with large genomes, traditional genotype-by-sequencing methods can result 

in an overrepresentation of unwanted symbiont sequence fragments (Leese et al. 2012; Toonen et 

al. 2013). To maximize coverage of the host coral genome, we employed the following 

approach. A RAD library was created from 100 ng genomic DNA from the “symbiont-free” 

Oculina sp. sample. This DNA was double-digested with PstI-HF and MfeI-HF (New England 

Biolabs) and ligated to complementary adapters that allowed the resulting amplified fragments to 

be converted to biotinylated RNA baits. Fragments with insert sizes 100-350 bp in size were 

isolated by gel extraction from a portion of the ligated product prior to amplification and the in 

vitro transcription reaction to create the RNA baits. This bait library template was also converted 

into one that could be sequenced along with the captured libraries described below. Nextera 

sequences and indices were added to the bait fragments using long primers matching the adapters 

in a short PCR reaction to create the baits library. Shotgun sequencing libraries were prepared 

from 189 submitted samples, plus one “no-capture” control replicate, using 5 ng DNA of each 

sample in a 1/10
th

 Nextera (Illumina, Inc.) reaction with unique dual-indices to distinguish the 

individuals. The samples were pooled and size-selected for insert sizes 170-370 bp. The pooled 

libraries were then used in two successive overnight hybridizations to the biotinylated bait 

library, followed by capture using Dynabeads® MyOne™ Streptavidin C1 magnetic beads 
(Thermo Fisher) and amplification. The final captured libraries were sequenced in two paired-

end Illumina HiSeq 3000 runs (one 2×100 bp and one 2×150 bp) at the Center for Genome 

Research and Biocomputing, Oregon State University. 

 

4.3.2. Genotyping 

 

SNPsaurus processed raw sequence reads using a custom pipeline and scripts. 

Reads that passed the default Illumina pipeline quality control were merged into long pseudo-

reads with bbmerge (BBMap, Bushnell B, sourceforge.net/projects/bbmap/). The pseudo-reads 

and individual paired-end reads were then assembled into longer contigs with tadpole (BBMap). 

The bait reads were collapsed into unique reads and aligned to the contigs using bbmap. The 

longest contigs that matched bait reads were selected to represent each bait locus. These 

representative loci were further collapsed to remove redundancy, ultimately creating a contig 

reference. Next, the paired-end reads were trimmed to remove Nextera adapter sequences using 

bbduk (BBMap). Then, 21 very abundant (present > 0.2% of the total reads) sequences found in 

the samples were removed so that misalignment of these reads to the reference set of loci would 

not cause artifacts. The trimmed reads were aligned to the contig reference with bbmap using an 
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88% identity threshold given the sequence diversity seen in the reads. After alignment, the 

sample contigs were converted to a variant call format (VCF) genotype table with SAMtools (Li 

et al. 2009), and then filtered for depth (>9 reads), minor allele frequency (≥ 0.05) and presence 
(≤ 25% missing data in a population) with VCFtools (Danecek et al. 2011). To minimize linkage 

of SNPs, only a single SNP from each sample contig was retained. The VCF was then filtered 

using a custom script to remove probable duplicated loci (loci that were heterozygous in nearly 

all samples, suggesting two fixed paralogous loci were aligned to the same reference). 

Individuals missing >50% data and loci missing >20% data were excluded from further genetic 

analyses. The final VCF file was converted into file formats necessary for subsequent analyses 

using PGDSPIDER 2.0.9.0 (Lischer & Excoffier 2012). Searches for contigs representing the 

SNPs were performed in BLASTn and BLASTx (Altschul et al. 1990). 

 

4.3.3. Genetic Diversity 

 

To test for genetic clones (in addition to our initial p14 marker screen), we calculated the allele 

dissimilarity between all pairs of individuals within all populations using the R package poppr 

(Kamvar et al. 2015; Kamvar et al. 2014). Dissimilarities equal to or close to zero would indicate 

that those pairs of individuals are likely clones. We also used poppr to calculate the number of 

privates alleles found in each population and in each zone. 

 

To compare genetic diversity between core and expansion populations, we calculated gene 

diversity (Hs) using FSTAT 2.9.4 (Goudet 1995), which corrects for variation in population 

sample size. We also calculated average Hs for each zone and compared these using two-sided 

tests in FSTAT. We ran 1000 permutations for all pairwise comparisons. 

 

4.3.4. Population Subdivision 

 

To test for genetic subdivision, we first performed an Analyses of Molecular Variance 

(AMOVA) implemented in GENODIVE 2.0b27 (Meirmans & Van Tienderen 2004). We 

analyzed the two expansions separately. The westward expansion consisted of the core zone SOE 

and the westward expansion zone ALB (Fig. 4.1). The northward expansion consisted of core 

zone SOE and the northern expansion zones NOE and CAT. We ran 10,000 permutations. We 

performed principle component analysis (PCA) using the EIGENSOFT package (Patterson et al. 

2006). We plotted the two components explaining the most variance of each PCA to examine 

genetic differentiation associated with populations, zones, temperature at time of sampling 

(Table 4.1), and sampling substrate. 

 

We used a Bayesian clustering analysis implemented in STRUCTURE 2.3.4 (Pritchard et al. 

2000), which detects significantly genetically differentiated clusters or populations (K), to 

examine population subdivision. Using the admixture model with correlated allele frequencies, 

we ran the program for 500,000 MCMC steps following a burn-in of 100,000 steps. We set 

sampling locations as a prior (LOCPRIOR model) because we expected structure signal to be 

weak (Hubisz et al. 2009) based on our previous survey of subdivision within O. patagonica in 

the Mediterranean (Leydet & Hellberg 2015). We performed 10 iterations for each inferred 

number of genetic clusters, K=1–6, and used the Evanno method (Evanno et al. 2005) 
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implemented in STRUCTURE HARVESTER (Earl & vonHoldt 2012) to determine the most 

likely number of genetic clusters. 

 

4.3.5. Factors Associated with Genetic Diversity 

 

We used a hierarchical Bayesian method implemented in GESTE 2.0 (Foll & Gaggiotti 2006) to 

evaluate how much of the variation in genetic subdivision can be explained by variation in 

geographic or environmental factors. GESTE estimates population-specific FST values and then 

relates them to environmental factors using a generalized linear model. We examined the effects 

of geographic location, sampling substrate (natural versus artificial), and temperature at time of 

sample (Table 4.1). For the westward expansion, we examined only the effects of longitude and 

temperature since all samples from these populations where collected from natural substrate. A 

total of 5 models were evaluated for the westward expansion, which included a combination of a 

constant term representing only random effects, environmental factors, and their interactions. For 

the northward expansion, we evaluated latitude, temperature, and substrate in a total of 8 models. 

Because we considered more than two factors, interaction terms were not allowed. We ran 40 

pilot runs of 5,000 iterations each to adjust acceptance rates for each parameter of the MCMC 

chain. An additional burn-in of 100,000 iterations was run followed by a sample size of 100,000 

iterations with a thinning interval of 20. Posterior probabilities of the models were used to assess 

which model (containing a set of factors) has the greatest effect on genetic structure. 

 

4.3.6. Loci under Selection 

 

To identify putative loci under selection, we used the FST-based genome-scan method 

implemented in BayeScEnv 1.1 (de Villemereuil & Gaggiotti 2015). BayeScEnv incorporates 

environmental differentiation and locus-specific effects to discriminate between signals of local 

adaptation relating to a particular environmental factor and spurious signals left by other 

processes, such as allele surfing, differences in mutation rate among loci, and background 

selection, thus improving its ability to control for false positives. 

 

To investigate loci putatively driving the expansions, we first examined geographic location as 

the environmental factor for each expansion front separately. For the westward expansion, we 

used longitude to represent the spread to the west. For the northern expansion, we used latitude 

to represent a poleward spread. We standardized latitude and longitude by dividing each by their 

respective standard deviation. We also investigated local adaption to temperature for each 

expansion. We standardized temperature at time of sampling by first computing the 

mathematical distance from the mean, and then dividing by the standard deviation. Finally, we 

tested for local adaptation to substrate (natural=1, artificial=2) in the northern expansion 

populations. To minimize any confounding effects due to geographic distance and/or varying 

temperature, we analyzed populations 10–13, which are in relatively close proximity and share 

the same sampling temperature. Sites 11 and 12 represent natural substrate, and sites 10 and 13 

represent artificial substrate (Table 4.2). 

 

We ran 20 pilot runs of 5,000 iterations each to adjust acceptance rates of the MCMC chain to 

the recommended range of 0.2–0.4. An additional burn-in of 10
6
 iterations was run followed by a 

sample size of 10
6 iterations with a thinning interval of 20. The prior parameters were π=0.1 and 
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p=0.25. We used the R package coda (Plummer et al. 2006) to ensure chain convergence and 

acceptable auto-correlation (Appendix C, Table 4.S1). BayeScEnv calculates two kinds of false 

discovery rate (FDR) related statistics: Posterior Error Probability (PEP) and q-value. We used 

an FDR cut-off of 5% to determine which loci were putatively under selection (Funk et al. 2016). 

 

Table 4.2. Summary of tests of local adaptation performed in BayeScEnv. 

Factor  Categories Populations/zones tested 

Expansion longitude 

latitude 

SOE, ALB 

SOE, NOE, CAT 

Temperature 26, 27, 28˚C 

22, 26, 27, 28˚C 

SOE, ALB 

SOE, NOE, CAT 

Substrate natural (1) vs artificial (2) 11+12 vs 10+13 

 

4.4. RESULTS 

 

4.4.1. Sampling, Sequencing and Genotyping 

 

The average sampling depths for zones ALB, SOE, NOE, and CAT were 2.1m, 1.6m, 1.7m, and 

4.6m, respectively. An ANOVA revealed that these zone averages were significantly different 

(F=29.37, p<0.0001), and post-hoc Tukey’s multiple comparisons tests indicated that the average 
sampling depth for zone CAT was significantly greater than all other zones (p<0.0001). 

 

RAD-sequencing of the baits resulted in 611,000 reads. After these reads were sorted and 

collapsed, reads with counts between 2 and 39 were retained, yielding 14,000 loci. 18,866,444 

raw reads were used to construct the reference. After trimming, removing high-repeat reads and 

merging, there were 821,531 sequences. These merged reads were assembled with the unmerged 

reads, producing 637,646 contigs, which were aligned to the bait reads. The alignment to the 

longest contig was used to select a representative contig locus for that bait locus, ultimately 

resulting in 595 SNPs (one per contig). Contig length ranged from 180-1272 bp (mean = 317 

bp). BLASTn (Altschul et al. 1990) searches resulted in only 8 contigs matching to nucleotide 

sequences. However, BLASTx (Altschul et al. 1990) searches returned 341 contigs that matched 

to proteins inferred from sequences from other corals (189 contigs had an E-value ≤1×10
-5

). No 

contigs aligned to Symbiodinium, whose full genome has been sequenced (Lin et al. 2015; 

Shoguchi et al. 2013), indicating that the protocol was successful in removing symbiont 

sequences. 

 

Twenty-eight of the 189 samples did not pass quality cutoffs (low number of sequence reads and 

>50% missing data, Appendix C, Figure 4.S1) and were therefore excluded from further 

analysis. Of the remaining 161 individuals, missing data ranged from 0–48.1%, with most (88%) 

of individuals containing <20% missing data (Appendix C, Figure 4.S2). The percent missing 

data per locus for these 161 individuals was no more than 14.3% (Appendix C, Figure 4.S3). All 

loci were therefore retained for analysis. 

 

Missing data were skewed among populations in that southern populations (those besides zone 

CAT) had a higher proportion of individuals with >10% missing data (Appendix C, Figure 4.S2). 

To determine whether inclusion of these individuals would alter our results, we ran preliminary 
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genetic analyses for a subset of 127 individuals that did not exceed 10% missing data in FSTAT 

2.9.4 (Goudet 1995). These alternative datasets produced similar results (not shown), suggesting 

that missing data did not significantly alter our results. The final dataset thus consisted of 161 

individuals (Table 4.1) and 595 SNPs. 

 

4.4.2. Genetic Diversity 

 

Sequencing of the variable nuclear marker p14 indicated ≥4 genotypes in each of the sampled 

populations, suggesting that the populations were not overwhelming comprised of clonemates. 

The average pairwise allele dissimilarity between individuals from RAD-seq SNP data across all 

populations was 18.7% (Appendix C, Figure 4.S4). The lowest average dissimilarity within a 

population was 15.6% (site 5), while the highest was 21.1% (site 10). The lowest dissimilarity 

between any two individuals was 7.3%, meaning that those two were 92.7% similar in their 

multi-locus genotype. Only eight pairs of individuals out of all possible pairwise comparisons 

had dissimilarities <10%. Although establishing a cut-off is somewhat arbitrary, given that we 

observed no dissimilarities <5%, we are confident that clonality was not a significant factor in 

our dataset and subsequent genetic analyses. 

 

We compared gene diversity (Hs) between all zones and found that the more recent and more 

successful northward expansion front (zone CAT) had higher heterozygosity (pairwise p=0.026, 

0.007, and 0.011), albeit slightly (0.288 vs. 0.272, 0.270, and 0.271), than the others (Figure 4.2). 

Zones ALB, SOE, and NOE did not differ from one another (pairwise p=0.748, 0.921, and 

0.854). Although no populations or zones harbored any private alleles, zones ALB and CAT 

shared 3 SNPs not present in SOE and 10 other SNPs not observed in NOE (Appendix C, Table 

4.S2). 

 

 
Figure 4.2. Gene diversity (Hs) calculated for each population. Zone averages are shown below 

the graphs. The asterisk indicates that zone CAT had significantly greater Hs average compared 

to all other zones. P-values of pairwise comparisons are as follows: ALB vs SOE (p=0.748), 

ALB vs NOE (p=0.921), ALB vs. CAT (p=0.026), SOE vs NOE (p=0.854), SOE vs CAT 

(p=0.007), NOE vs CAT (p=0.011). 
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4.4.3. Population Subdivision 

 

AMOVA revealed significant subdivision among populations and zones along the northern 

expansion, but not the less successful westward expansion front (Table 4.3). PCA showed 

genetic differentiation associated with zones and with temperature, but not with population or 

habitat (Figures 4.3 and 4.4). Although significant, these effects were not particularly strong, 

with the first and second eigenvectors explaining only 3.24% (p<0.01) and 2.42% (p=0.01) of 

the variation, respectively. 

 

Table 4.3. Analysis of molecular variance performed for a. westward expansion populations, and 

b. northward expansion populations. Significant F-statistic values are in bold. 

a. Source of  

    variation 

% variation F-stat b. Source of  

variation 

% variation F-stat 

within populations 0.997 0.003 within populations 0.985 0.015 

among populations 0.001 0.001 among populations 0.007 0.007 

among zones 0.002 0.002 among zones 0.009 0.009 

 

The Evanno method ΔK (Evanno et al. 2005) and LnP(K) agreed that the most likely number of 

genetic clusters inferred by STRUCTURE was two. The two clusters represent a southern and 

northern cluster (Figure 4.5). ALB and SOE are entirely assigned to the southern cluster and 

CAT entirely to the northern cluster. NOE is comprised of a mix of individuals, with individuals 

from southern sites 7 and 8 assigned with ALB and SOE, while the northern site 9 clusters with 

CAT. We also found that two individuals within the northernmost population have a high 

probability of assignment to the southern genetic cluster. 

 

Together, these results suggest that the westward expansion is genetically similar to the core 

populations, whereas the more successful northern expansion is genetically distinct from the 

westward expansion and the core populations, indicated by a genetic break within the NOE zone. 

 

4.4.4. Hybridization in Northern Populations 

 

We investigated whether the genetic distinctness and relatively high genetic diversity of northern 

populations (9-14) could be the result of hybridization with a co-occurring and morphologically 

similar coral, Cladocora caespitosa. The haplotype network for the variable nuclear marker p14 

shows that all sequences from Oculina spp. (including O. patagonica from this study) share 

similar alleles across a large geographic scale, and are distinct from Cladocora caespitosa (at 

least 20 mutation steps between Oculina and Cladocora alleles), suggesting that these species are 

not hybridizing (see Appendix C, Figure 4.S5 for additional information). 

 

4.4.5. Factors Associated with Genetic Diversity 

 

We examined the effects of geographic location, temperature at time of sampling, and substrate 

(natural versus artificial) on patterns of genetic structure on the two expansion fronts separately 

(Table 4.4). Along the westward expansion, model 5 that included all factors and their 

interaction had the highest probability (Table 4.4a). This implies a complex interaction of 

geographical and environmental factors shaping patterns of genetic diversity, but does not point
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Figure 4.3. Principal component analysis plots of individuals grouped by location: population and zone. The first eigenvector explains 

3.24% of the variation (p<0.01). The second eigenvector explains 2.42% of the variation (p=0.01). 
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Figure 4.4. Principal component analysis plots of individuals grouped by environmental variables: substrate, and temperature at each 

locality. The first eigenvector explains 3.24% of the variation (p<0.01). The second eigenvector explains 2.42% of the variation 

(p=0.01).
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Figure 4.5. STRUCTURE bar plot for K=2. Individuals (bars) are grouped by population along 

the x-axis, with the probability of assignment to a particular genetic cluster (represented by 

different shades) along the y-axis. 

 

to a single environmental factor explaining the majority of the variation. For the northern 

expansion, however, temperature alone stood out as being the single factor most driving genetic 

structure. The model (3) with the highest probability included the constant and temperature 

(Table 4.4b). Furthermore, all models that included temperature had the highest probabilities, 

and the sum of all models containing temperature was 99.8%, compared to just 0.2% for those 

without temperature. 

 

Table 4.4. Model probabilities (P(M)) for all models examined, a. along the westward expansion, 

and b. along the northward expansion. 

 a. Westward Expansion 

Model Factors included P(M) 

1 Constant 0.00 

2 Constant + Longitude 0.00 

3 Constant + Temperature 0.00 

4 Constant + Longitude + Temperature 0.00 

5 Constant + Longitude + Temperature + 

Longitude*Temperature 

1.00 

 b. Northern Expansion  

Model Factors included P(M) 

1 Constant 0.00077 

2 Constant + Latitude 0.00086 

3 Constant + Temperature 0.302 

4 Constant + Latitude + Temperature 0.263 

5 Constant + Substrate 0.00057 

6 Constant + Latitude + Substrate 0.00061 

7 Constant + Temperature + Substrate 0.247 

8 Constant + Latitude + Temperature + Substrate 0.186 

 



73 

 

4.4.6. Loci under Selection 

 

Along the westward expansion front, we found no signal for selection associated with either 

geographic location or temperature. Along the northern expansion, we also found no evidence 

for loci under selection associated with location. However, when we tested for local adaptation to 

temperature along the northern expansion, we found one candidate locus under selection, as 

indicated by an FDR value < 0.05. A BLASTx search of the contig matched (with high 

probability; E-value = 4×10
-8

) a V-type ATPase 116 kDa subunit (accession number 

XP_015752902), part of a protein family previously shown to be down-regulated under thermal 

stress in the coral Acropora aspera (Rosic et al. 2014). Three other loci had FDR values between 

0.06 and 0.30, while the remaining 591 loci had values above 0.85, with the majority (99%) of 

these >0.90. We found no loci putatively under selection associated with substrate. 

 

4.5. DISCUSSION 

 

In this study, we investigated the range expansion of O. patagonica along the Spanish coast 

using a RAD-Seq protocol modified to target coral DNA. Our goal was to compare the genetic 

and environmental differences between a successful northward expansion and a less successful 

westward expansion. 

 

4.5.1. RAD-Seq Targeted to Host DNA 

 

Although the advent of next-generation sequencing of reduced-representation libraries has vastly 

improved our ability to study non-model organism at a genomic scale, this can still be a daunting 

task for organisms that harbor endosymbionts. Unwanted symbiont DNA can contaminate these 

libraries, especially in corals, which harbor vast numbers (as much as 6×10
6
 Symbiodinium cells 

per cm
2
 of coral tissue)(Stimson et al. 2002) of intracellular algal symbionts with large genomes 

(ca. 1200-1500 Mbp)(Lin et al. 2015; Shoguchi et al. 2013). By comparison, the genome of the 

coral Acropora digitifera is 420 Mbp (Shinzato et al. 2011), about one-third the size. Combined 

with the high densities of Symbiodinium within coral tissue, the signal from coral genes could be 

swamped by its symbiont's DNA. Dissociating changes to host and symbiont genomes is crucial, 

given that symbiont variation (‘switching’) may provide a quick way to respond to 
environmental change (Domaschke et al. 2013; Jones et al. 2008; Leydet & Hellberg 2016). 

Thus, the response of the symbiont community may confound any coral-specific responses if 

their genomes are not carefully disentangled. 

 

To focus sequencing efforts on the coral host, we implemented a new RAD-Seq method to 

capture and sequence coral sequence fragments. Although, we were unable to take advantage of 

the reference genomes available for coral and symbiont (due to phylogenetic divergence and 

partial genome assembly, respectively), most contigs matched best to coral proteins in BLASTx 

searches. Furthermore, we only retained contigs that aligned to our ‘symbiont-free’ sample as an 
extra precaution. We are therefore confident that the majority of our loci are indeed coral-

specific. 
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4.5.2 The Two Spanish Expansions are Genetically Distinct 

 

We found that the westward and northern expansions of Oculina patagonica are genetically 

distinct (Figure 4.5). While the westward expansion is similar to more long-established core 

populations, the northern expansion, although more recent (Serrano et al. 2013c), is genetically 

distinct from the core, although two individuals within the northernmost population have a high 

probability of assignment to the southern populations. The break between the two genetic 

clusters occurs within the northern expansion, within zone NOE between populations 8 and 9 

(Fig. 4.1). This region coincides geographically with a decrease in temperature at time of 

collection (27˚C at population 8 and 26˚C at population 9). Indeed, according to our PCA plots 

(Figure 4.4) and GESTE results (Table 4.4), temperature appears to be a factor associated with 

population structure along the northern expansion. A similar shift in temperature along the 

westward expansion (between populations 1 and 2), however, is not associated with a genetic 

break. 

 

Aside from a temperature shift, the observed genetic break within the northern expansion could 

also stem from a barrier at the Ibiza Channel (IC in Fig. 4.1). The Ibiza Channel coincides with 

genetic breaks in other marine organisms (García-Merchán et al. 2012; Mokhar-Jamai et al. 

2011), including the coral Cladocora caespitosa (Casado-Amezúa et al. 2014). Circulation 

across the Ibiza Channel is often blocked by the Northern Current, which carries waters south to 

the Ibiza Channel and then diverts northeastward (Pinot et al. 2002; Ruiz et al. 2009). In the 

summer, the northeastern deflection of the Northern Current, caused by the formation of a gyre, 

is more intense (Pinot et al. 2002). Given that Oculina patagonica spawns at the end of the 

summer (Fine et al. 2001), these currents may restrict gene flow between populations on either 

side of the Ibiza Channel, thus explaining the observed genetic break between populations 8 and 

9. 

 

Elsewhere within our sampled range, the Almeria-Oran front (AOF between ALB and SOE in 

Fig. 4.1) coincides with a genetic break in some marine species (Patarnello et al. 2007), but not 

others (García-Merchán et al. 2012). In Oculina patagonica, this front does not appear to be a 

genetic break, as populations on either side of the Almeria-Oran front are genetically similar 

(Figure 4.5). 

 

4.5.3. Increased Genetic Diversity in the Northern Expansion 

 

Unlike many invasions (Cahill & Levinton 2016; Herborg et al. 2007; Tsutsui et al. 2000), 

genetic diversity within the northern expansion was higher than that in the other, longer-

established populations (Figure 4.2). In contrast, heterozygosity within the westward expansion 

was the same as in the core populations. Although genetic diversity does not necessarily predict 

invasion success (Roman & Darling 2007), genetic variation is the raw material for evolution 

and adaptation. Therefore, having more genetic variation may provide the northern populations 

with more raw material on which adaptation can act. 

 

Although uncommon, increased genetic diversity in invasive populations has been documented 

in other organisms. This has been most often attributed to admixture of distinct populations 

within the invaded range, due either to multiple introductions from different source populations 
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(Kolbe et al. 2004; Novak & Mack 1993; Roman 2006) or to hybridization within the newly 

invaded range (Ayres & Strong 2001; Hohenlohe et al. 2013). 

 

Could Oculina patagonica be hybridizing within the northward expanded range? The closest 

relative to O. patagonica in the Mediterranean is Cladocora caespitosa (Fukami et al. 2004; 

Kitahara et al. 2010), even though classical taxonomy has long placed them in separate families. 

The two are easily mistaken for each other in the field (C. Grupstra, personal observation) and 

their COI haplotypes differ by only a single SNP over 606 bp (C. caespitosa COI accession 

number KR297263). C. caespitosa occurs along the entire Spanish Mediterranean coast (Casado-

Amezúa et al. 2014) and spawns at the end of summer (August– October) in the western 

Mediterranean, when seawater temperatures are declining (Kersting et al. 2013). This coincides 

with the spawning time of O. patagonica (Fine et al. 2001). However, C. caespitosa is more 

abundant at deeper depths (> 10 m) than O. patagonica (Casado-Amezúa et al. 2014; Kersting & 

Linares 2012), suggesting the two species segregate by depth. In addition, according to a variable 

nuclear marker (p14), C. caespitosa is highly genetically distinct from Oculina spp. (including 

O. patagonica along the northern Spanish expansion) (Appendix C, Figure 4.S5). Whereas the 

average number of nucleotide differences for p14 within Oculina spp. is 1.4, the average number 

of nucleotide difference between Oculina spp. and Cladocora is 20.5. Our data thus suggest that 

interspecific hybridization does not explain the relatively high genetic diversity in the northern 

expansion. 

 

Could the increased genetic variation in the northern expanded range be the result of multiple 

introductions? The European green crab, for example, was first reported in North American 

waters (southern Massachusetts) in 1817, but has only recently (last 50 years) expanded north 

into Nova Scotia. Surprisingly, greater allelic diversity was found in these more recent northern 

populations compared to the older southern populations, a pattern attributed to admixture with 

secondary introductions from northern Europe (Roman 2006). Candidate populations for a 

source of genetically differentiated secondary invaders of O. patagonica occur nearby. 

 

Close by, O. patagonica occurs along the Mediterranean coasts of France and Italy, although 

they are not well established in either country. Our recent work (Leydet & Hellberg 2015), 

however, indicates that the Spanish and Italian populations are not genetically differentiated 

from each other, nor indeed are any of the populations we sampled across the Mediterranean, 

although this result could stem from the relatively low power of our 5-locus dataset. The 

significant differentiation we found here at a much smaller geographic scale using 595 SNP loci 

suggests that we cannot rule out possible gene flow from genetically differentiated Italian 

populations, whose distinctness was too subtle to detect with our previous dataset. 

 

In addition to admixture, an influx of genes from different habitats could boost northern genetic 

diversity. Depth is increasingly being implicated in driving genetic structuring within coral 

populations (Pérez-Portela et al. 2016; Prada & Hellberg 2013; Serrano et al. 2014). Along the 

coast of Spain, O. patagonica is most commonly reported from depths less than 10 m (Coma et 

al. 2011; Serrano et al. 2013c; Terrón-Sigler et al. 2015), however colonies have been found 

along the Catalan coast as deep as 28 m (Serrano et al. 2013c). Indeed, samples collected from 

the two most northern sites (13 and 14), were from greater depths compared to the other sites 
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(Table 4.1), and may harbor allelic variation from genetically differentiated deep populations. 

Sampling along a depth cline is needed to test this hypothesis (Prada & Hellberg 2013). 

 

4.5.4. Environmental Factors Facilitating Northern Range Expansion 

 

Similar to other invasions (Cavanaugh et al. 2014; Pateman et al. 2012; Yamano et al. 2011), 

temperature has been linked to the geographic and demographic spread of O. patagonica, mainly 

by extending its growth period (Serrano et al. 2013c). We found that populations along the 

Spanish Mediterranean coast appear to the genetically differentiated along a temperature gradient 

and that temperature variation is driving patterns of genetic structure. Furthermore, we found one 

locus (a V-type proton ATPase subunit) under selection associated with temperature, but not 

latitude (which is correlated with temperature). This suggests that temperature itself is the 

environmental factor driving selection at the locus. V-ATPases are involved in cell membrane 

transport. Interestingly, another V-type proton ATPase proteolipid subunit is down-regulated in 

the coral Acropora aspera in response to thermal and nutrient stress (Rosic et al. 2014). Gene 

expression studies comparing core and expanded populations are needed to more effectively test 

for adaptation to cooler temperatures within the northern expansion front (Lancaster et al. 2016). 

 

Modification of coastal habitats has also been linked to the Mediterranean expansion of O. 

patagonica (Coma et al. 2011; Salomidi et al. 2013; Serrano et al. 2013c; Terrón-Sigler et al. 

2015). We did not find genetic differentiation associated with substrate, nor did we find any loci 

under selection when we compared populations sampled from different substrates. Although 

additional paired-sampling from both substrate types along the entire Spanish coast are needed to 

provide a more powerful test for local adaption to artificial substrate, our results suggest that O. 

patagonica may not be locally adapted to artificial substrate. Instead, it seems more likely that it 

is an opportunistic colonizer, taking advantage of the increased space availabilities provided by 

artificial habitats (Serrano et al. 2013c). 
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CHAPTER 5. 

CONCLUSIONS 

 
In the face of global environmental changes, species must adapt, acclimate, or move, or they will 

perish. The goal of my dissertation was to understand the origins and mechanisms underlying the 

rapid and recent population expansion of the invasive coral Oculina patagonica in the 

Mediterranean Sea. Using nuclear markers and next-generation sequencing data, I explored 

whether O. patagonica has been recently introduced into the Mediterranean or whether it is a 

native invasive, as well as the mechanisms that have allowed this coral to be so successful within 

the Mediterranean Sea, where it is locally expanding its range. 

 

In my first research chapter (Chapter 2), I found no genetic or historical demographic evidence to 

support a recent human-mediated introduction of O. patagonica from the western North Atlantic 

into the Mediterranean. Instead, I found that Mediterranean and Atlantic populations are 

genetically distinct and appear to have begun diverging about 5 million years ago. Fossil 

evidence of Oculina spp. in the eastern North Atlantic millions of years ago further supports the 

hypothesis that Oculina spp. has had a long history in this region. My results suggest that 

Mediterranean populations of O. patagonica have not been recently introduced from North 

America. Instead, it is more likely that O. patagonica is a native invasive species, and that it has 

always existed somewhere in the eastern Atlantic, either in undetectable numbers or overlooked 

and undersampled sites and habitats, and has recently begun expanding to detectable numbers in 

the Mediterranean, likely in response to anthropogenic environmental changes. 

 

Next (Chapter 3), using genetic and environmental data I found that Oculina corals harbor 

different symbiotic algal communities across their western Atlantic and Mediterranean range, 

and that habitat differences in sea surface temperature are better correlated with this geographical 

variation than the host’s genetics, depth or chlorophyll a concentration. This was particularly 

evident for populations within the Mediterranean. These results suggest that the Symbiodinium 

communities that Oculina corals harbor may reflect acclimatization to local temperature 

conditions, thus allowing these corals to endure localized thermal stress. The work also 

demonstrates the importance of these algal symbionts even for facultative zooxanthellate corals 

that can survive without them. 

 

In my final research chapter (Chapter 4), I used a modified restriction-site associated DNA 

sequencing (RAD-Seq) protocol to target coral host DNA and separate its adaptive response 

from that of its symbionts. I collected hundreds of single nucleotide polymorphisms (SNPs) from 

O. patagonica from across the entire Spanish Mediterranean coast, where this coral has been 

expanding westward and northward from the southwestern core populations. I found that the 

more successful northern expansion populations harbor greater genetic diversity than the less 

successful westward expansion populations or the core populations. I also found that the northern 

most populations are genetically distinct from all other populations. I did not find evidence of 

local adaptation to artificial substrate, suggesting that this coral is simply an opportunistic 

colonizer, a trait likely to have facilitated its rapid expansion. In contrast to substrate, I found 

that temperature appears to have driven local adaptive only along the northern expansion; a V-

type proton ATPase subunit gene was found to be putatively under selection associated with 

temperature. Together, these results suggest that unique genetic variation and adaptation along 
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the northern expansion front may have promoted the rapid and very successful poleward range 

expansion of O. patagonica in the western Mediterranean. 

 

Altogether, my dissertation highlights the factors and mechanisms that have allowed a coral to be 

so successful despite its stressful and changing environment. Most research is focused on 

studying threatened tropical corals and assessing their adaptive capabilities and long-term 

success. In contrast, my dissertation focusses on the success and adaptive potential of an 

understudied temperate coral in the face of environmental changes, including increasing 

temperatures and coastal habitat modifications. My findings suggest that O. patagonica is able to 

successfully respond to changing and stressful environmental conditions via symbiont switching 

and host adaptation, thus facilitating its expansion in its native range. 

 

5.1 FUTURE DIRECTIONS 

 

While I examined the association between Oculina corals and their algal symbionts in driving 

acclimation to different habitats, the coral holobiont constitutes a congregation of many other 

microorganisms including endolithic algae (Fine & Loya 2002; Rubio-Portillo et al. 2014a) 

bacteria, archaea, and viruses (Nissimov et al. 2009; Rubio-Portillo et al. 2014b). These 

communities have also been implicated in coral health and survival (Gilbert et al. 2012; 

Nissimov et al. 2009). Furthermore, microbial community shifts have been associated with 

stress, lending further support that these communities play a role in coral health (Ainsworth & 

Hoegh-Guldberg 2009; Lee et al. 2015; Vega Thurber et al. 2009). Given that the bacterial 

communities associated with O. patagonica vary seasonally in the eastern Mediterranean (Koren 

& Rosenberg 2006), future work should examine bacterial and other microorganismal variation 

associated with thermal and other stressors to better understand their role in the successful 

expansion of the coral host. 

 

Another potential explanation for O. patagonica’s widespread success across the Mediterranean 

Sea is a variable stress response allowing it to cope with the wide range of environmental 

conditions across the sea (Rodolfo‐Metalpa et al. 2014). Gene expression in corals has been 

shown to vary in response to stress (DeSalvo et al. 2010; DeSalvo et al. 2008; Meyer et al. 2011; 

Polato et al. 2010). Location-specific variation in gene expression in response to stress occurs in 

corals despite significant gene flow, suggesting that even genetically similar populations can 

adapt to different habitats by varying their gene expression (Polato et al. 2010). Furthermore, 

gene expression variation has been associated with invasion where ‘native-core’ and expanding 

populations differ in gene expression profiles, potentially revealing candidate genes contributing 

to invasiveness (Hodgins et al. 2013). Exploring the role of gene expression plasticity in O. 

patagonica adaptation will require an RNA-Seq approach, a method based on the deep 

sequencing and quantitative analysis of short cDNA reads (Meyer et al. 2011), which can then be 

used to determine significant gene expression patterns that may be unique to particular locations 

across the Mediterranean. Transcriptomic data will be particularly useful to further investigate 

the mechanisms driving O. patagonica’s northward expansion in the western Mediterranean. 

Using genomic data, we were able to identify a candidate gene under selection showing promise 

to identify additional evolutionary responses using transcriptomic data, which is more suitable 

for exploring functional adaptation. 
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Finally, the dissertation work suggests that Oculina corals, in particular O. patagonica, are able 

to overcome the challenges of changing environmental conditions. However, little work has been 

conducted on evaluating the long-term adaptive potential of corals if temperatures continue to 

increase, coasts continue to be affected by human modifications, and the environmental changes 

that we are witnessing worsen in the coming decades. Such studies are needed to better assess 

the future of corals, and will require a multidisciplinary approach to identify all of the key 

environmental factors affecting corals’ survivorship (and their threshold values), and predictive 

computer modeling. 
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APPENDIX A. 

SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 

Table 2.S1. Collection sites of all Oculina spp. samples used in this study. 

 Country Locality n
a
 n

b
 Latitude Longitude Depth (m) 

W
es

te
rn

 

A
tl

an
ti

c 

United States North Carolina 8 8 34˚42′ N 76˚40′ W 2–4 

Daytona Beach, Florida 13 13 29˚15′ N 80˚45′ W 21–23 

Cape Florida, Florida 9 9 25˚40′ N 80˚9′ W 2 

Panama City, Florida 13 13 30˚3′ N 85˚51′ W 28–29 

Bermuda Tynes Bay 13 13 32˚18′ N 64˚46′ W 3–10 

M
ed

it
er

ra
n

ea
n

 Spain Cabo de Palos 14 13 37˚38′ N 0˚41′ W 3–8 

Italy Savona 2 2 44˚20′ N 8˚30′ E 1–2 

Greece Athens 18 17 37˚53′ N 23˚43′ E 0.5–1 

Lebanon Tyre 4 4 33˚16′ N 35˚11′ E 4 

Israel Caesarea 10 4 32˚30′ N 34˚54′ E 2–5 

Hadera 8 4 32˚27′ N 34˚55′ E 2–5 

Sdot-Yam 10 5 32˚29′ N 34˚53′ E 2–5 

Total 122 105    
a
 sample size prior to removing clonal genotypes 

b
 sample size after removing clonal genotypes



 

89 

 

Table 2.S2. Nuclear markers used to genotype all Oculina spp. samples in this study. 

Marker (putative gene) 

Primer sequences 

Length 

(bp) 

# alleles S
a
 k

b
 πc

 ϴd
 rate

e 

p14
*
 (Fatty acid elongase) 

5′ TGTACCACTTGGGATGAACG 3′ 
5′ TCAAGCTTCCAGTCTTGTGAAA 3′ 

206 19 18 1.54 0.0075 0.0148 2.8 × 10
-7

 

p62
*
 (Elongation factor 1α) 

5′ TGATTGTCCTCAACCATCCA 3′ 
5′ CTCCTGACAGACTTTCGATGG 3′ 

249 11 6 1.03 0.0042 0.0048 3.4 × 10
-7

 

p302
*
 (Tachylectin-2 motif) 

5′ TTATACGGCGTCACAAACGA 3′ 
5′ TCGTCATCACCCTTTTATTCC 3′ 

226–229 20 28 2.17 0.0098 0.0228 3.2 × 10
-7

 

p243 (Crystalline) 

5′ TCCCCAGAATGTCAACAACA 3′ 
5′ ATTCYTTMCGAATGCTCTGC 3′ 

124 8 11 4.42 0.0357 0.0150 1.7 × 10
-7

 

p255 (S-adenosylmethionine synthetase) 

5′ GCCAGGTGGATTGCTAAGTC 3′ 
5′ CRTCTKTGTTTAAATAAAGCAAACATT 3′ 

197 18 18 3.91 0.0200 0.0155 2.7× 10
-7

 

*
 Eytan et al. 2009

1
 

a 
segregating sites 

b
 average number of nucleotide differences 

c
 nucleotide diversity per site 

d
 theta-W per site based on number of segregating sites 

e
 substitution rate per locus per year used in IMa analyses

                                                 
1
 Eytan RI, Hayes M, Arbour-Reily P, Miller M, Hellberg ME (2009) Nuclear sequences reveal mid‐range isolation of an imperilled 

deep‐water coral population. Molecular Ecology 18, 2375-2389. 
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Figure 2.S1. Photographs of Oculina spp. specimens. A–D are Oculina spp. fossil specimens 

from the Smithsonian National Museum of Natural History. A and B are O. patagonica from 

South America (USNM 75199 and USNM 75205, respectively). C and D are O. crassoramosa 

from France (USNM I 80807). E is a skeletal specimen of extant O. patagonica from the eastern 

Mediterranean. F is a skeletal specimen of extant O. diffusa from Panama City, Florida (USA). 

 

 

 
Figure 2.S2. COI Neighbor-Joining Tree. Neighbor-joining tree constructed using COI 

haplotypes from western North Atlantic Oculina spp. populations and O. patagonica populations 

from the Mediterranean, with Solenastrea hyades as the outgroup. Numbers represent the 

number of individuals from each locality that share that haplotype. The tree shows that O. 

patagonica (bolded) shares the same haplotype common to most western North Atlantic Oculina 

spp. 
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APPENDIX B. 

SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

  

Table 3.S1. Collection sites of all samples used in this study. 

 Country Locality Latitude Longitude n
a
 Depth (m) Date collected 

W
es

te
rn

 

A
tl

an
ti

c 

United States North Carolina 34˚42′ N 76˚40′ W 8 2–4 August 2003 

Daytona Beach, Florida 29˚15′ N 80˚45′ W 11 21–23 July 2005 

Cape Florida, Florida 25˚40′ N 80˚09′ W 9 2 March 2004 

Panama City, Florida 30˚03′ N 85˚51′ W 11 28–29 January 2004 

Bermuda Tynes Bay 32˚18′ N 64˚46′ W 13 3–10 October 2005 

M
ed

it
er

ra
n

ea
n

 Spain Cabo de Palos 37˚38′ N 00˚41′ W 14 3–8 August 2011 

Italy Savona 44˚20′ N 08˚30′ E 2 1–2 July 2013 

Greece Athens 37˚53′ N 23˚43′ E 18 0.5–1 July 2011 

Lebanon Tyre 33˚16′ N 35˚11′ E 4 4 August 2011 

Israel Caesarea, Hadera, 

Sdot-Yam 

32˚28′ N 34˚54′ E 27 2–5 July 2012 

a
 number of samples (this final dataset included all individuals with no missing data)
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Table 3.S2. Top BLAST matches of all cp23S haplotypes obtained in this study. Haplotype color identifications correspond to the 

color designations in the haplotype network in Figure 3.1. Coverage and identity matches are indicated as both percentages and base 

pairs (bp). Asterisks indicate haplotypes with 100% coverage and 100% identity to Symbiodinium type published sequences. 

Haplotype Accession # Reference Type Species Coverage Identity 

Red* JX213589, 

JX213590 

LaJeunesse et al. 2012 B2 S. psygmophilum 100% 

(181/181 bp) 

100% 

(181/181 bp) 

JN557993– 

JN557995 

Pochon et al. 2012 B2 – 100% 

(181/181 bp) 

100% 

(181/181 bp) 

YYeellllooww  JX213589, 

JX213590 

LaJeunesse et al. 2012 B2 S. psygmophilum 100% 

(181/181 bp) 

99% 

(180/181 bp) 

Orange JX213589, 

JX213590 

LaJeunesse et al. 2012 B2 S. psygmophilum 100% 

(182/182 bp) 

99% 

(180/182 bp) 

Light Green JX213589–
JX213591 

LaJeunesse et al. 2012 B2 S. psygmophilum 100% 

(180/180 bp) 

99% 

(179/180 bp) 

Black JX213589, 

JX213590 

LaJeunesse et al. 2012 B2 S. psygmophilum 100% 

(181/181 bp) 

99% 

(180/181 bp) 

Grey  JX213589–
JX213591, 

JX213593 

LaJeunesse et al. 2012 B2 S. psygmophilum 74% 

(134/181 bp) 

100% 

(134/134 bp) 

Blue* JX213588 LaJeunesse et al. 2012 B1 S. minutum 100% 

(141/141 bp) 

100% 

(141/141 bp) 

JN557992 Pochon et al. 2012 B1 – 100% 

(141/141 bp) 

100% 

(141/141 bp) 

Dark Green JX213587, 

JX213588 

LaJeunesse et al. 2012 B1 S. minutum 100% 

(141/141 bp) 

99% 

(140/141 bp) 

Purple JX213588 LaJeunesse et al. 2012 B1 S. minutum 100% 

(141/141 bp) 

99% 

(140/141 bp) 
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Table 3.S3. Top BLAST matches of all b7sym15 haplotypes obtained in this study. Haplotype color identifications correspond to the 

color designations in the haplotype network in Figure 3.1. The blue haplotype also matched sequences downloaded from DRYAD 

entry doi:10.5061/dryad.r84n5 (Thornhill et al. 2013). Coverage and identity matches are indicated as both percentages and base pairs 

(bp). Asterisks indicate haplotypes with 100% coverage and 100% identity to Symbiodinium type published sequences. 

Haplotype Accession # Reference Type Species Coverage Identity 

Red* JX263428 LaJeunesse et al. 2012 B2 S. psygmophilum 100% 

(139/139 bp) 

100% 

(139/139 bp) 

YYeellllooww**  JX263429 LaJeunesse et al. 2012 B2 S. psygmophilum 100% 

(139/139 bp) 

100% 

(139/139 bp) 

Green  JN602468 Reichman & Vize 2014 B? – 100% 

(139/139 bp) 

100% 

(139/139 bp) 

Blue* JX263427 LaJeunesse et al. 2012 B1 S. minutum 100% 

(145/145 bp) 

100% 

(145/145 bp) 

DRYAD 

download 

Thornhill et al. 2013 B1 S. minutum 100% 

(145/145 bp) 

100% 

(145/145 bp) 

Purple JN602460 Reichman & Vize 2014 B? – 100% 

(126/126 bp) 

100% 

(126/126 bp) 

KT149354 Parkinson et al. 2015 B1 S. endomadracis 99% 

(125/126 bp) 

100% 

(125/125 bp) 

EF212868 Pettay & LaJeunesse 2007 B7 – 100% 

(126/126 bp) 

99% 

(125/126 bp) 
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Figure 3.S1. Genetic barriers of the coral host (red) and algal symbiont (blue) computed in BARRIER version 2.2 (Manni et al. 2004). 

BARRIER uses Voronoï tessellation (the polygons on the map), genetic distance matrices, and Monmonier’s maximum difference 
algorithm to identify the zones where differences between pairs of populations are largest (i.e., genetic barriers on a map). We 

computed FST matrices for host and symbiont separately in GENODIVE 2.0b27 (Meirmans & Van Tienderen 2004). We performed 

the analyses on all loci for each partner (host=5 loci; symbiont=3 loci) and composite the strongest barrier for each locus and each 

partner on a single map. The thickness of the barriers indicates their robustness (i.e., agreement across loci), where thicker barriers are 

more robust. BARRIER recovered the two main breaks in Oculina spp. previously described by Eytan et al. (2009) and Leydet & 

Hellberg (2015). BARRIER also recovered the two main genetic breaks in the Symbiodinium communities that we describe in this 

study. These results corroborate our STRUCTURE results, showing that the main barriers identified distinguish the main genetic 

clusters obtained by STRUCTURE (Figures 3.2 and 3.3), and further show that the host and symbiont are structured differently. 
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Figure 3.S2. Correlation between Symbiodinium community composition and temperature 

(minimum and maximum annual) for all populations (a and b) and Mediterranean populations 

only (c and d). The white squares, gray triangles, and black circles represent the white, gray, and 

black genetic clusters, respectively, obtained from STRUCTURE analyses (Figure 3.2 for all 

populations; Figure 3.3d for Mediterranean). Trend lines are as follow: white= short dashed line, 

gray= large dashed line, black= solid line. Significant correlations are indicated with an asterisk. 

 

 
Figure 3.S3. Correlation between Symbiodinium community composition and temperature for 

western North Atlantic populations only. The white squares, gray triangles, and black circles 

represent the white, gray, and black genetic clusters, respectively, obtained from STRUCTURE 

analyses (Figure 3.3b). Trend lines are as follow: white= short dashed line, gray= large dashed 

line, black= solid line. Significant correlation is indicated with an asterisk; however, it did not 

survive a multiple comparisons correction. 
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Figure 3.S4. Correlation between Symbiodinium community composition and chlorophyll a 

concentration. The white squares, gray triangles, and black circles represent the white, gray, and 

black genetic clusters, respectively, obtained from STRUCTURE analyses (Figure 3.2 for all 

populations; Figure 3.3b for western North Atlantic; Figure 3.3d for Mediterranean). Trend lines 

are as follow: white= short dashed line, gray= large dashed line, black= solid line. Significant 

correlations are indicated with an asterisk; however, only the correlation between the ‘black’ 
genetic cluster and minimum annual concentration in the Mediterranean survived a multiple 

comparisons correction.
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Figure 3.S5. Correlation between Symbiodinium community composition and depth (Appendix B, Table 3.S1). The white squares, 

gray triangles, and black circles represent the white, gray, and black genetic clusters, respectively, obtained from STRUCTURE 

analyses (Figure 3.2 for all populations; Figure 3.3b for western North Atlantic; Figure 3.3d for Mediterranean). Trend lines are as 

follow: white= short dashed line, gray= large dashed line, black= solid line. None of the correlations were significant. 



 

99 

 

References for Appendix B 

 

Eytan RI, Hayes M, Arbour-Reily P, Miller M, Hellberg ME (2009) Nuclear sequences reveal 

mid‐range isolation of an imperilled deep‐water coral population. Molecular Ecology 18, 

2375-2389. 

 

LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics‐based description of Symbiodinium 

minutum sp. nov. and S. psygmophilum sp. nov.(Dinophyceae), two dinoflagellates 

symbiotic with cnidaria. Journal of Phycology 48, 1380-1391. 

 

Leydet KP, Hellberg ME (2015) The invasive coral Oculina patagonica has not been recently 

introduced to the Mediterranean from the western Atlantic. BMC Evolutionary Biology 

15. 

 

Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) 

variation: how barriers can be detected by using Monmonier's algorithm. Human Biology 

76, 173-190. 

 

Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the 

analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792-794. 

 

Parkinson JE, Coffroth MA, LaJeunesse TC (2015) New species of Clade B Symbiodinium 

(Dinophyceae) from the greater Caribbean belong to different functional guilds: S. 

aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. 

pseudominutum sp. nov. Journal of Phycology 51, 850-858. 

 

Pettay DT, Lajeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized 

for Caribbean corals in the genus Madracis. Molecular Ecology Notes 7, 1271-1274. 

 

Pochon X, Putnam HM, Burki F, Gates RD (2012) Identifying and characterizing alternative 

molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. 

PloS One 7. 

 

Reichman JR, Vize PD (2014) Separate Introns Gained within Short and Long Soluble Peridinin-

Chlorophyll a-Protein Genes during Radiation of Symbiodinium (Dinophyceae) Clade A 

and B Lineages. PloS One 9. 

 

Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR (2013) Population genetic data of a 

model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored 

introductions across ocean basins. Molecular Ecology 22, 4499-4515. 



 

100 

 

APPENDIX C. 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

 

Table 4.S1. Effective sample sizes for selection tests performed in BayeScEnv used to access 

auto-correlation. a. along the westward expansion, and b. along the northward expansion. 

a. Longitude Temperature 

logL 877548 491103 

Fst1 992702 996030 

Fst2 993258 992499 

Fst3 999999 991468 

Fst4 995844 982067 

Fst5 995191 992295 

Fst6 996562 999999 

 

b. Latitude Temperature Substrate 

logL 711681 256648 259055 

Fst1 989712 991013 993002 

Fst2 988618 992447 977795 

Fst3 992260 995751 962350 

Fst4 1000108 995973 990028 

Fst5 986966 991158  

Fst6 999999 999999  

Fst7 996640 995313  

Fst8 992133 987196  

Fst9 999999 999999  

Fst10 994734 999999  

Fst11 991774 990571  

 



 

101 

 

Table 4.S2. Top Blastx matches of the loci found to be fixed for a single SNP allele in SOE (3 loci), and NOE (10 loci). These 13 loci 

were polymorphic in ALB and CAT. 

Zone Contig ID Top Blastx match putative gene ID E-value 

SOE 51818 XP015748588 52 kDa repressor of the inhibitor of the protein kinase-like 6e-05 

 11502 XP015758989 leucine-rich repeat-containing protein 40-like 0.017 

 6703 XP015770793 tetratricopeptide repeat protein 7B-like 7.0 

NOE 16614 no matches – – 

 1888 XP015752860 daf-12-interacting protein 1-like 1e-11 

 35333 XP015773152 homeobox protein prophet of Pit-1-like isoform X1 7.8 

 2413 no matches – – 

 74814 XP015753452 exonuclease 1-like 0.29 

 45449 XP015752302 uncharacterized protein LOC107332086 4e-19 

 26338 XP015756712 uncharacterized protein LOC107336159 1e-24 

 5097 XP015776996 E3 ubiquitin-protein ligase MARCH6-like 6.1 

 35112 XP015767167 transmembrane prolyl 4-hydroxylase-like 0.17 

 845 XP015754954 uncharacterized protein LOC107334529 2e-27 
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Figure 4.S1. Bar graphs showing the percent missing data (top) and number of reads that passed 

quality control (bottom) for all 189 individuals sequenced. 28 individuals with >50% missing 

data were excluded from further analyses. 

 

 
Figure 4.S2. Bar graph showing the percent missing data for 161 individuals with <50% missing 

data, and included in subsequent genetic analyses. 
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Figure 4.S3. Bar graphs showing the percent missing data for all 595 loci for all 189 sequenced 

individuals (top), and the 161 individuals with <50% missing data (bottom). 

 

 
Figure 4.S4. The average percent of pairwise allele dissimilarity between individuals within 

populations. Bars represent the minimum and maximum percent. Population site IDs are along 

the x-axis. 
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Figure 4.S5. Haplotype network for a variable nuclear gene (p14: Fatty acid elongase; 206 bp) 

constructed using statistical parsimony (Clement et al. 2000) within the program PopART 1.7 

(http://popart.otago.ac.nz). We used a Bayesian statistical method implemented in PHASE 2.1 

(Stephens et al. 2001, Stephens & Donnelly 2003, Stephens & Scheet 2005) to resolve alleles in 

heterozygous individuals. Nine individuals with alleles that could not be phased to a probability 

>90% were excluded from the network, although including them (as most likely alleles) did not 

significantly alter the resulting network (not shown). Each pie graph represents an allele and the 

shades represent the proportion of individuals from the different populations that share that 

particular allele. Small dashed lines along line segments connecting alleles represent the number 

of mutation steps separating the alleles. Spanish Oculina patagonica populations included in this 

study are in bold and colored according to Figure 4.1. Oculina spp. from the western North 

Atlantic (Eytan et al. 2009, Leydet & Hellberg 2015) are shades of pink and orange, while O. 

patagonica populations from the central and eastern Mediterranean (Leydet & Hellberg 2015) 

are shades of light blue and green. Cladocora caespitosa from Spain was collected along the 

Catalan coast. Italian C. caespitosa were collected from Pantelleria Island. Numbers in 

parentheses are the number of individuals from each population, totaling 252 individuals. 
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protected, on intranet, or CD-Rom/DVD or E-book/E-journal. It may not be republished 

in electronic open access. 

For any electronic use not mentioned, please contact Springer at 

permissions.springer@spi-global.com. 

 

- Although Springer controls the copyright to the material and is entitled to negotiate on 

rights, this license is only valid subject to courtesy information to the author (address is 

given in the article/chapter). 

 

- If you are an STM Signatory or your work will be published by an STM Signatory and 

you are requesting to reuse figures/tables/illustrations or single text extracts, permission 

is granted according to STM Permissions Guidelines: http://www.stm-

assoc.org/permissions-guidelines/ 

 

For any electronic use not mentioned in the Guidelines, please contact Springer 

atpermissions.springer@spi-global.com. If you request to reuse more content than 

stipulated in the STM Permissions Guidelines, you will be charged a permission fee for 

the excess content. 

 

Permission is valid upon payment of the fee as indicated in the licensing process. If 

permission is granted free of charge on this occasion, that does not prejudice any rights 

we might have to charge for reproduction of our copyrighted material in the future. 

 

-If your request is for reuse in a Thesis, permission is granted free of charge under the 

following conditions: 

This license is valid for one-time use only for the purpose of defending your thesis and 

with a maximum of 100 extra copies in paper. If the thesis is going to be published, 

permission needs to be reobtained. 

- includes use in an electronic form, provided it is an author-created version of the thesis 

on his/her own website and his/her university’s repository, including UMI (according to 
the definition on the Sherpa website: http://www.sherpa.ac.uk/romeo/); 

- is subject to courtesy information to the co-author or corresponding author. 

 

Geographic Rights: Scope 

Licenses may be exercised anywhere in the world. 

Altering/Modifying Material: Not Permitted 

http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/
http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/
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Figures, tables, and illustrations may be altered minimally to serve your work. You may 

not alter or modify text in any manner. Abbreviations, additions, deletions and/or any 

other alterations shall be made only with prior written authorization of the author(s). 

 

Reservation of Rights 

Springer reserves all rights not specifically granted in the combination of (i) the license 

details provided by you and accepted in the course of this licensing transaction and (ii) 

these terms and conditions and (iii) CCC's Billing and Payment terms and conditions. 

 

License Contingent on Payment 

While you may exercise the rights licensed immediately upon issuance of the license at 

the end of the licensing process for the transaction, provided that you have disclosed 

complete and accurate details of your proposed use, no license is finally effective unless 

and until full payment is received from you (either by Springer or by CCC) as provided 

in CCC's Billing and Payment terms and conditions. If full payment is not received by 

the date due, then any license preliminarily granted shall be deemed automatically 

revoked and shall be void as if never granted. Further, in the event that you breach any of 

these terms and conditions or any of CCC's Billing and Payment terms and conditions, 

the license is automatically revoked and shall be void as if never granted. Use of 

materials as described in a revoked license, as well as any use of the materials beyond the 

scope of an unrevoked license, may constitute copyright infringement and Springer 

reserves the right to take any and all action to protect its copyright in the materials. 

 

Copyright Notice: Disclaimer 

You must include the following copyright and permission notice in connection with any 

reproduction of the licensed material: 

"Springer book/journal title, chapter/article title, volume, year of publication, page, 

name(s) of author(s), (original copyright notice as given in the publication in which the 

material was originally published) "With permission of Springer" 

In case of use of a graph or illustration, the caption of the graph or illustration must be 

included, as it is indicated in the original publication. 

 

Warranties: None 

Springer makes no representations or warranties with respect to the licensed material and 

adopts on its own behalf the limitations and disclaimers established by CCC on its behalf 

in its Billing and Payment terms and conditions for this licensing transaction. 

 

Indemnity 

You hereby indemnify and agree to hold harmless Springer and CCC, and their 

respective officers, directors, employees and agents, from and against any and all claims 

arising out of your use of the licensed material other than as specifically authorized 

pursuant to this license. 

 

No Transfer of License 

This license is personal to you and may not be sublicensed, assigned, or transferred by 

you without Springer's written permission. 
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No Amendment Except in Writing 

This license may not be amended except in a writing signed by both parties (or, in the 

case of Springer, by CCC on Springer's behalf). 

 

Objection to Contrary Terms 

Springer hereby objects to any terms contained in any purchase order, acknowledgment, 

check endorsement or other writing prepared by you, which terms are inconsistent with 

these terms and conditions or CCC's Billing and Payment terms and conditions. These 

terms and conditions, together with CCC's Billing and Payment terms and conditions 

(which are incorporated herein), comprise the entire agreement between you and 

Springer (and CCC) concerning this licensing transaction. In the event of any conflict 

between your obligations established by these terms and conditions and those established 

by CCC's Billing and Payment terms and conditions, these terms and conditions shall 

control. 

 

Jurisdiction 

All disputes that may arise in connection with this present License, or the breach thereof, 

shall be settled exclusively by arbitration, to be held in the Federal Republic of Germany, 

in accordance with German law. 

 

V 12AUG2015 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) 

or +1-978-646-2777.  
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